吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 884-891.doi: 10.13229/j.cnki.jdxbgxb201503029

Previous Articles     Next Articles

Mechanical analysis of friction stir welding robot under typical working conditions

LUO Hai-tao1, 2, ZHOU Wei-jia1, WANG Hong-guang1, WU Jia-feng1   

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2.Shenyang Institute of Automation,University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-10-12 Online:2015-05-01 Published:2015-05-01

Abstract: Considering the latest developed Friction Stir Welding (FSW) robot, a set of structure design analysis process is established for large-scale equipments of heavy-loading and high precision. The FSW robot is characterized by large volume, complicated structure and extremely bad working conditions. In order to improve the accuracy and evaluate the mechanical property of the welding joints, the mechanical model of the FSW head is built and the welding process under five working conditions is simulated. The obtained forces and torques can be taken as the boundary conditions for robot strength and stiffness analyses; and the analysis results can be used to verify the rationality of structure design of the robot. Simulation results show that the stiffness performance of the robot is good under the most severe welding condition of melon-segments configuration; all the functional components are safe and reliable, and the structure design of FSW robot meets the welding quality requirement. The results may provide references for further lightweight design and mechanical performance optimization of the FSW robot.

Key words: special-use mechanical engineering, friction stir welding (FSW) robot, typical working conditions, stiffness, strength, numerical simulation

CLC Number: 

  • TP242.2
[1] 王国庆. 铝合金的搅拌摩擦焊接[M]. 北京: 中国宇航出版社,2010.
[2] 栾国红. 搅拌摩擦焊接的航天应用[J]. 现代焊接, 2007,9(5):112-114.
Luan Guo-hong. The space application of friction stir welding[J]. Modern Welding,2007,9(5):112-114.
[3] 董春林,栾国红,关桥. 搅拌摩擦焊在航空航天工业的应用发展现状与前景[J]. 焊接,2008(11):25-31.
Dong Chun-lin, Luan Guo-hong, Guan Qiao. Application development present situation and prospect of friction stir welding in the aerospace industry[J]. Welding & Joining,2008(11):25-31.
[4] 栾国红,关桥. 搅拌摩擦焊——革命性的宇航制造新技术[J]. 航天制造技术,2003(4):16-23.
Luan Guo-hong, Guan Qiao. Frictional stir welding-a revolutionary new technology of aerospace manufacturing[J]. Aerospace Manufacturing Technology,2003(4):16-23.
[5] Okawa Y,Taniguchi M,Sugii H,et al. Development of 5-axis friction stir welding system[C]∥SICE-ICASE International Joint Conference,Korea,2006,1266-1269.
[6] Yavuz H. Function-oriented design of a friction stir welding robot[J]. Journal of Intelligent Manufacturing, 2004,15(6):761-775.
[7] 鄢东样,史清宇,吴爱萍. 搅拌头机械载荷在搅拌摩擦焊接中的作用的数值分析[J]. 金属学报,2009,45(8):994-999.
Yan Dong-yang,Shi Qing-yu,Wu Ai-ping. The numerical analysis of friction stir welding with mechanical load from welding head[J]. Acta Metallurgica Sinica,2009,45(8):994-999.
[8] Soron M,Kalaykov I. A robot prototype for friction stir welding[C]∥2006 IEEE Conference on Robotics, Automation and Mechatronics,Bangkok, Thailand,2006:1-5.
[9] 周利,刘会杰,刘鹏. 搅拌头受力模型及应用[J]. 焊接学报,2009,30(3):93-96.
Zhou Li,Liu Hui-jie,Liu Peng. The mechanical model and application of friction stir welding head[J]. Welding Journal,2009,30(3):93-96.
[10] Wong J C. The correspondence between experimental data and computer simulation of friction stir welding (FSW)[D]. Morgantown, West Virginia:Department of Mechanical and Aerospace Engineering,2008.
[11] 赵旭东,张忠科,孙丙岩,等. 基于DEFORM的搅拌摩擦焊接过程数值模拟及流动分析[J]. 机械研究与应用,2009(3):43-46.
Zhao Xu-dong,Zhang Zhong-ke,Sun Bing-yan, et al. Numerical simulation and flow analysis of friction stir welding process based on deform[J]. Mechanical Research & Application,2009(3):43-46.
[12] Mokhtar A. Simulation of friction stir spot welding (FSSW) process: study of friction phenomena[D]. Morgantown, West Virginia:Department of Mechanical and Aerospace Engineering,2007.
[13] 张昭,陈金涛,王晋宝,等. 基于仿真的搅拌摩擦焊连接AA2024-T3不同板厚过程对比[J]. 机械工程学报,2011,47(18):23-27.
Zhang Zhao,Chen Jin-tao,Wang Jin-bao,et al. Simulation comparision of friction stir welding connection process on AA2024-T3 alluminum alloy with different thickness[J]. Chinese Journal of Mechanical Engineering,2011,47(18):23-27.
[14] 汪洪峰,左敦稳,王岷, 等. 7022铝合金搅拌摩擦焊焊接区的组织与力学性能[J]. 华南理工大学学报,2010,38(11):12-16.
Wang Hong-feng,Zuo Dun-wen,Wang Min,et al. 7022 aluminum alloy microstructure and mechanical properties of friction stir welding area[J]. Journal of South China University of Technology,2010,38(11):12-16.
[15] Zhao Hua. Friction stir welding (FSW) simulation using an arbitrary lagrangian-eulerian (ALE) moving mesh approach[D]. Morgantown, West Virginia:Department of Mechanical and Aerospace Engineering,2005.
[16] 丛明,刘同占,温海营,等. 一种新型仿下颌运动机器人设计及运动性能分析[J]. 机器人,2013,35(2):239-248.
Cong Ming, Liu Tong-zhan, Wen Hai-ying, et al. Design and kinematics performance analysis of a novel jaw movement robot[J]. Robot,2013,35(2):239-248.
[17] 房立金,魏永乐,陶广宏. 一种新型带柔索双臂式巡检机器人设计[J]. 机器人,2013,35(3):319-325.
Fang Li-jin,Wei Yong-le,Tao Guang-hong. Design of a novel dual-arm inspection robot with flexible cable[J]. Robot,2013,35(3):319-325.
[18] 刘悦,汪劲松. 基于轴承及导轨接触刚度的混联机床静刚度研究及优化[J]. 机械工程学报,2007,43(9):151-154.
Liu Yue, Wang Jin-song. Static stiffness research and optimization on a hybrid machine tool considering the stiffness of bearings and guideways[J]. Chinese Journal of Mechanical Engineering,2007,43(9):151-154.
[19] 汪满新,王攀峰,宋轶民,等. 4自由度混联机器人静刚度分析[J]. 机械工程学报,2011,47(15):9-16.
Wang Man-xin,Wang Pan-feng,Song Yi-min, et al. Stiffness analysis of a 4-DOF Hybrid robot[J]. Chinese Journal of Mechanical Engineering,2011,47(15):9-16.
[1] BI Qiu-shi,WANG Guo-qiang,HUANG Ting-ting,MAO Rui,LU Yan-peng. Tooth strength analysis of mineral sizer by coupling discrete element method and finite element method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1770-1776.
[2] ZHU Wei,WANG Chuan-wei,GU Kai-rong,SHEN Hui-ping,XU Ke,WANG Yuan. Stiffness and dynamics analysis of a new type of tensegrity parallel mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1777-1786.
[3] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793-1798.
[4] NA Jing-xin, PU Lei-xin, FAN Yi-sa, SHEN Chuan-liang. Effect of temperature and humidity on the failure strength of Sikaflex-265 aluminum adhesive joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1331-1338.
[5] GONG Ya-feng, WANG Bo, WEI Hai-bin, HE Zi-heng, HE Yu-long, SHEN Yang-fan. Surface subsidence law of double-line shield tunnel based on Peck formula [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1411-1417.
[6] ZHUNG Wei-min, ZHAO Wen-zeng, XIE Dong-xuan, LI Bing. Joint performance analysis on connection of ultrahigh-strength steel and aluminum alloy with hot riveting [J]. 吉林大学学报(工学版), 2018, 48(4): 1016-1022.
[7] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler [J]. 吉林大学学报(工学版), 2018, 48(4): 1085-1091.
[8] QIU Xiao-ming, WANG Yin-xue, YAO Han-wei, FANG Xue-qing, XING Fei. Multi-objective optimization of resistance spot welding parameters for DP1180/DP590 using grey relational analysis based Taguchi [J]. 吉林大学学报(工学版), 2018, 48(4): 1147-1152.
[9] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[10] LIANG Xiao-bo, CAI Zhong-yi, GAO Peng-fei. Numerical simulation and experiment of cylindrical forming of sandwich composite panel [J]. 吉林大学学报(工学版), 2018, 48(3): 828-834.
[11] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[12] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[13] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[14] LIU Nian, XU Tao, XU Tian-shuang, HU Xian-lei, LIU Wei-hai. Lightweight design of TRB dashboard cross beam [J]. 吉林大学学报(工学版), 2018, 48(1): 199-204.
[15] LIU Chun-guo, LIU Wei-dong, DENG Yu-shan. Effect of multi-point punch active loading path on the stretch-forming of sheet [J]. 吉林大学学报(工学版), 2018, 48(1): 221-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[5] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[6] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[7] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[8] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[9] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .
[10] SU Shu-jie, HE Lu. Transient dynamic congestion evacuation model of pedestrian at walk traffic planning crossroads[J]. 吉林大学学报(工学版), 2018, 48(2): 440 -447 .