吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1710-1717.doi: 10.13229/j.cnki.jdxbgxb201605048

Previous Articles     Next Articles

Extraction algorithm of salient object by fast dictionary learning and feature rarity

LI Hui, WANG Yan-jiang, LIU Bao-di, LIU Wei-feng, WANG Xiao-meng   

  1. College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, China
  • Received:2015-05-03 Online:2016-09-20 Published:2016-09-20

Abstract: In order to extract salient object in natural image more precisely, a now method to extract salient object is proposed. First, a fast dictionary learning algorithm is developed for feature extraction based on sparse coding theory. Then, the rarity of the dictionary atoms is computed by the statistical analysis of the corresponding sparse coefficients, and saliency computation is conducted based on the feature rarity. Finally, the mathematical morphology operators are applied to remove the false object. Experimental results show that the proposed method is more accurate for extracting the salient object in natural images than four existing methods and can deal with images containing multiple objects as well.

Key words: information processing technology, object extraction, visual attention, fast dictionary learning, feature rarity, receive operating characteristic(ROC) curve

CLC Number: 

  • TN919
[1] Itti L, Koch C. Computational modelling of visual attention[J]. Nature Reviews Neuroscience, 2001, 2(3): 194-203.
[2] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
[3] Treisman A M, Gelade G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980, 12(1): 97-136.
[4] Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry[J]. Human Neurobiology, 1985, 4(4): 219-227.
[5] Harel J, Koch C, Perona P. Graph-based visual saliency[C]∥Advances in Neural Information Processing Systems 19, Vancouver, British Columbia, Canada, 2006: 545-552.
[6] Hou X, Zhang L. Saliency detection: a spectral residual approach[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Minnesota, USA, 2007:1-8.
[7] Li J, Levine M D, An X, et al. Visual saliency based on scale-space analysis in the frequency domain[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(4): 996-1010.
[8] Olshausen B A, Field D J. Sparse coding with an overcomplete basis set: a strategy employed by V1?[J]. Vision Research, 1997, 37(23): 3311-3325.
[9] 穆治亚, 魏仲慧, 何昕,等. 采用稀疏表示的红外图像自适应杂波抑制[J]. 光学精密工程, 2013, 21(7):1850-1857.
Mu Zhi-ya, Wei Zhong-hui, He Xin, et al. Adaptive clutter suppression of infrared images by using sparse representation[J]. Optics and Precision Engineering, 2013, 21(7):1850-1857.
[10] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[11] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415.
[12] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]∥The Twenty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, California, USA, 1993: 40-44.
[13] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1): 33-61.
[14] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[C]∥20th Annual Conference on Neural Information Processing Systems,Vancouver, British Columbia, Canada, 2006: 801-808.
[15] Liu B D, Wang Y X, Shen B, et al. Blockwise coordinate descent schemes for sparse representation[C]∥2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014: 5267-5271.
[16] Bertsekas D P. Nonlinear programming[J]. Journal of the Operational Research Society, 1995, 4(1): 67-110.
[17] Liu T, Yuan Z, Sun J, et al. MSRA database[DB/OL].[2015-01-06].http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm.
[18] Stentiford F, Park A, Heath M. An estimator for visual attention through competitive novelty with application to image compression[J]. Immunology, 2010, 104(2): 149-156.
[19] Mancas M, Mancas-thillou C, Gosselin B, et al. A rarity-based visual attention map-application to texture description[C]∥2006 International Conference on Image Processing, Atlanta, Georgia, USA, 2006: 445-448.
[20] 赵佳佳, 唐峥远, 杨杰, 等. 基于图像稀疏表示的红外小目标检测算法[J]. 红外与毫米波学报, 2011, 30(2): 156-161.
Zhao Jia-jia, Tang Zheng-yuan, Yang Jie, et al. Infrared small target detection based on image sparse representation[J]. Journal of Infrared and Millimeter Waves, 2011, 30(2): 156-161.
[21] Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(2): 353-367.
[22] Hemami S, Estrada F, Susstrunk S. Achanta database[DB/OL].[2015-11-04].http://ivrlwww.epfl.ch/supplementary_material/RK_CVPR09/.
[23] Yang J, Yang S, Fu Y, et al. Non-negative graph embedding[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, Alaska, USA, 2008: 1-8.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] WANG Guo-lin, FU Nai-ji, ZHANG Jian, PEI Zi-rong. Simulation of the radial tire curing process based on K-R kinetic model[J]. 吉林大学学报(工学版), 2013, 43(03): 659 -664 .
[10] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .