Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (8): 1943-1950.doi: 10.13229/j.cnki.jdxbgxb20210205

Previous Articles    

Design and test of the chassis of triangular crawler reclaiming rice harvester

Shan ZENG1,2(),Deng-pan HUANG1,2,Wen-wu YANG1,2(),Wei-jian LIU1,2,Zhi-qiang WEN1,2,Li ZENG1,2   

  1. 1.College of Engineering,South China Agricultural University,Guangzhou 510642,China
    2.Key Laboratory of Key Technology on Agricultural Machine and Equipment,Ministry of Education,South China Agricultural University,Guangzhou 510642,China
  • Received:2021-03-17 Online:2022-08-01 Published:2022-08-12
  • Contact: Wen-wu YANG E-mail:shanzeng@scau.edu.cn;yangwenwu@scau.edu.cn

Abstract:

Aiming at the problem of the current common crawler harvester harvesting first-season regenerative rice with high crushing rate and no mature regenerated rice first-season harvester products, combined with the agronomic requirements of the first-season harvesting of regenerated rice, a triangular crawler-type regenerative rice harvesting was designed. The whole structure and working principle of the chassis of the triangular crawler reclaimed rice harvester are described, the hydraulic walking system is designed, and a theoretical analysis on the performance of chassis is carried out. Field tests were carried out on the chassis of the triangular crawler regenerated rice harvester. The test results showed that the speed range of the triangular crawler regenerated rice harvester chassis in the field is 0~4.5 km/h, and the speed range of paddy field operation is 0~2.8 km/h. The minimum turning radius of paddy field driving is 1780 mm, the maximum climbing angle is 32°, and the maximum ridge height is 215 mm, which can meet the requirements of field walking in the harvesting season of regenerated rice. The actual rolling rate in the field is 31.7%, which is 21.5% lower than that of the common crawler harvester.

Key words: agricultural mechanization engineering, chassis, regenerated rice, hydraulic, harvester

CLC Number: 

  • S225.4

Fig.1

Triangular crawler reclaiming rice harvester"

Table 1

Main technical parameters of triangular caterpillar chassis for reclaiming rice harvester"

参 数数值
外形尺寸(长×宽×高)/(mm×mm×mm)5300×2680×3150
装载质量/kg4800
配套动力/kW74.5
驱动方式四轮驱动
转向方式差速转向
轮距/mm1500
轴距/mm1800
履带宽度/mm280
履带接地长度/mm800
最小离地间隙/mm600
行驶速度/(km·h-10~4.5

Fig.2

Hydraulic system schematic diagram"

Fig.3

Analysis of longitudinal limit overturning force of triangular caterpillar chassis of reclaiming rice harvester"

Fig.4

Analysis of force of crawler wheel over ridge of chassis of triangular crawler type reclaiming rice harvester"

Table 2

Field test results"

参 数检测结果技术要求
行驶速度/(km·h-10~4.50~4.5
作业速度/(km·h-10~2.80~2.8
最小转弯半径/mm1780≤1900
最大爬坡角度/(°)32≥30
最大越埂高度/mm215≥200
轮陷深度/mm257≤300

Fig.5

Comparison of rolling conditions"

1 谢华安. 超级稻再生栽培高产特征及示范效果[C]∥2007中国科协年会专题论坛“红莲型杂交水稻学术专题研讨会”论文汇编, 武汉, 湖北, 中国, 2007: 189-195.
2 郭文韬. 略论中国再生稻的历史发展[J]. 中国农史, 1993(4): 1-6.
Guo Wen-tao. On the historical development of ratooning rice in china[J]. Chinese Agricultural History, 1993(4): 1-6.
3 张桂莲,屠乃美,袁菊红,等. 播种期对再生稻腋芽萌发和产量的影响[J]. 湖南农业大学学报:自然科学版, 2005(3): 229-232.
Zhang Gui-lian, Tu Nai-mei, Yuan Ju-hong, et al. Effects of sowing stage on the sprouting of axillary bud and yield of ratooning rice[J]. Journal of Hunan Agricultural University(Natural Sciences), 2005(3): 229-232.
4 朱永川, 熊洪, 徐富贤, 等. 再生稻栽培技术的研究进展[J]. 中国农学通报, 2013, 29(36): 1-8.
Zhu Yong-chuan, Xiong Hong, Xu Fu-xian, et al. Progress on research of ratoon rice cultivation technology[J]. Chinese Agricultural Science Bulletin, 2013, 29(36): 1-8.
5 农业部关于印发《全国种植业结构调整规划(2016~2020年)》的通知[J]. 中华人民共和国农业部公报, 2016(5): 47-55.
Notice of ministry of agriculture on the issuance of national planting industry structure adjustment plan (2016~2020)[J]. Bulletin of the Ministry of Agriculture of the People's Republic of China, 2016(5): 47-55.
6 刘正忠. 再生稻头季机收关键技术分析[J]. 农业科技通讯, 2013(4): 118-120.
Liu Zheng-zhong. Analysis on key technology of mechanical harvesting of ratoon rice[J]. Agricultural Science and Technology Communication, 2013(4): 118-120.
7 郭翰林, 林建, 施火结, 等. 再生稻头季收获机械化的现状与发展趋势[J]. 福建农机, 2016(1): 16-18.
Guo Han-lin, Lin Jian, Shi Huo-jie, et al. Current situation and development trend of first harvest mechanization of ratoon rice[J]. Fujian Agricultural Machinery, 2016(1): 16-18.
8 马晓春. 中稻蓄留再生稻品种筛选与头季收获方式对再生季产量的影响[D]. 武汉: 华中农业大学植物科学技术学院, 2015.
Ma Xiao-chun. Studies on variety screening ratoon rice and the effect of main crop harvesting model on ratoon crop yield[D]. Wuhan: College of Plant Science and Technology, Huazhong Agricultural University, 2015.
9 肖森. 再生稻头季机收对再生季产量和品质的影响[D]. 武汉: 华中农业大学植物科学技术学院, 2018.
Xiao Sen. Effect of mechanical harvesting of main crop on the grain yield and quality of ratoon crop on ratooned rice[D]. Wuhan: College of Plant Science and Technology, Huazhong Agricultural University, 2018.
10 张国忠,张翼翔,黄见良,等. 再生稻割穗机的设计与性能试验[J]. 华中农业大学学报, 2016, 35(1): 131-136.
Zhang Guo-zhong, Zhang Yi-xiang, Huang Jian-liang, et al. Design and performance test of ratoon rice cutting machine[J]. Journal of Huazhong Agricultural University, 2016, 35(1): 131-136.
11 刘竣. 高地隙轮式再生稻收割机的设计与试验[D]. 广州: 华南农业大学工程学院, 2019.
Liu Jun. Design and experiment of high clearance wheeled ratoon rice harvester[D]. Guangzhou: College of Engineering, South China Agricultural University, 2019.
12 付建伟,张国忠,谢干,等. 双通道喂入式再生稻收获机研制[J]. 农业工程学报, 2020, 36(3): 11-20.
Fu Jian-wei, Zhang Guo-zhong, Xie Gan, et al. Development of double-channel feeding harvester for ratoon rice[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 11-20.
13 施国标,林逸,张昕. 动力转向技术及其发展[J]. 农业机械学报, 2006(10): 173-176.
Shi Guo-biao, Lin Yi, Zhang Xin. Power steering of car and its development [J]. Transactions of the Chinese Society for Agricultural Machinery, 2006(10): 173-176.
14 时元玲. 全液压顶驱电液比例容积调速系统研究[D]. 长春: 吉林大学建设工程学院, 2018.
Shi Yuan-ling. Development and investigation of electro-hydraulic proportional volumetric speed control system of hydraulic top drive[D]. Changchun: College of Construction Engineering, Jilin University, 2018.
15 Li Y, He L. Counterbalancing speed control for hydrostatic drive heavy vehicle under long down-slope[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(4): 1533-1542.
16 Huang J, Dong Z, Quan L, et al. Development of a dual displacement controlled circuit for hydraulic shovel swing motion[J]. Automation in Construction, 2015, 57: 166-174.
17 王宝山. 全液压驱动高地隙履带作业车设计研究[D]. 郑州: 河南农业大学机电工程学院, 2017.
Wang Bao-shan. Design and research of full hydraulic drive high clearance tracked vehicle[D]. Zhengzhou: College of Mechanical and Electrical Engineering, Henan Agricultural University, 2017.
18 蔡岗础. 油茶果采摘机三角橡胶履带轮底盘的设计与力学分析[D]. 长沙: 中南林业科技大学机电工程学院, 2014.
Cai Gang-chu. The design and mechanical analysis of oil camellia fruit picking machines rubber track system chassis[D]. Changsha: College of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, 2014.
19 . 农业机械试验条件测定方法的一般规定 [S].
20 . 农业机械生产试验方法 [S].
21 . 水稻联合收割机作业质量 [S].
[1] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[2] Zhao-hui JIN,Le-qi GU,Wei HONG,Fang-xi XIE,Tian YOU. Analysis on pressure fluctuation of hydraulic variable valve actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 773-780.
[3] Tong-jian WANG,Shu-wei YANG,Xiao-dan TAN,Jin-shi CHEN,Tong-wen LIU,Zhen-ling ZHI. Performance analysis of hydraulic excavator based on DEM-MBD co-simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 811-818.
[4] Jian-jun NIE,Xiu-peng YAN,Zong-zheng MA,Xiao-lin XIE,Jia-jie GUO,Ya-lei LYU. Design and trafficability analysis of new bow waist mobile chassis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 515-524.
[5] Duan-yang GENG,Xiao-dong MU,Guo-dong ZHANG,Zong-yuan WANG,Jun-ke ZHU,Hai-gang XU. Analysis and optimization of cleaning mechanism of wheat combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 219-230.
[6] Zun-ling DU,Yi-min ZHANG. Reliability analysis of piston pump under random flow rate [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1967-1974.
[7] Xing-jun HU,Jing-long ZHANG,Yu-fei LUO,Li XIN,Sheng LI,Jin-rui HU,Wei LAN. Influence investigation of cooling tube structure and airflow direction on thermal⁃hydraulic performance of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 1933-1942.
[8] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[9] Xing-jun HU,Jing-long ZHANG,Li XIN,Yu-fei LUO,Jing-yu WANG,Tian-ming YU. Investigation on influence of cooling tube structure and airflow speed on cold side performance of air⁃cooled charge air cooler [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1557-1564.
[10] Jia-cheng YUAN,Chang WANG,Kun HE,Xing-yu WAN,Qing-xi LIAO. Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1897-1907.
[11] Wei LI,Huai-liang ZHANG,Wei QU. Design method of hydraulic straight pipe under random vibration [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1222-1229.
[12] Zhen SONG,Jun-liang LI,Gui-qiang LIU. Constant flow prediction method of variable speed hydraulic power source based on deep learning and limitation fuzzy [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1106-1110.
[13] Ji-cheng HUANG,Cheng SHEN,Ai-min JI,Xian-wang LI,Bin ZHANG,Kun-peng TIAN,Hao-lu LIU. Optimization of cutting⁃conveying key working parameters of hemp harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 772-780.
[14] Wei-da WANG,Yan-jie WU,Jia-lei SHI,Liang LI. Electronic hydraulic brake power system control strategy based on driver intention recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 406-413.
[15] Qian CONG,Jin XU,Bo-shuai MA,Xiao-chao ZHANG,Ting-kun CHEN. Design and test of tractor hydraulic suspension system testing device based on virtual simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 754-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!