Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (9): 2203-2212.doi: 10.13229/j.cnki.jdxbgxb20220394

Previous Articles    

High⁃order sliding mode observer for proton exchange membrane fuel cell system

Cheng LI1,2(),Hao JING1,Guang-di HU1,Xiao-dong LIU1,Biao FENG1   

  1. 1.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610036,China
    2.China Automotive Technology and Research Center Co. ,Ltd. ,Tianjin 300300,China
  • Received:2022-04-11 Online:2022-09-01 Published:2022-09-13

Abstract:

To address the problem that the internal state variables of the Proton Exchange Membrane Fuel Cell (PEMFC) system are difficult to be measured directly by sensors, which makes it impossible to troubleshoot the PEMFC system and design a model-based controller, the High Order Sliding Mode (HOSM) observer was designed. Firstly, an 11th-order anode dead-end PEMFC system model suitable for observation was built. Then,on the basis of this model, the HOSM observer was designed by adjusting the errors between the measured sensor values (stack voltage, compressor outlet flow rate and stack temperature) and the estimated values by the HOSM algorithm. Finally, the performance of the designed HOSM observer was compared with the performance of the traditional sliding mode observer. The comparison results of the observation effect and the squared error integral show that the designed observer can accurately observe each state quantity and has better observation performance.

Key words: vehicle engineering, proton exchange membrane fuel cell(PEMFC), observer, high order sliding mode, modeling and simulation

CLC Number: 

  • TM911.4

Fig.1

PEMFC system structure diagram"

Table 1

Main parameters of the stack"

参数取值参数取值
燃料电池节数N3.16经验参数B0.003 255 6
燃料电池活化面积A/cm2260最大电流密度imax/(A·cm-22.2
阳极容积Van/m30.002 35氢气比热容Cp,H2/[J·(g·K)-114.03
阴极容积Vca/m30.004 5氧气比热容Cp,O2/[J·(g·K)-10.917
供应歧管容积Vsm/m30.005氮气比热容Cp,N2/[J·(g·K)-11.039
电压经验参数ξ11.050 2水蒸气比热容Cp,v/[J·(g·K)-11.87
电压经验参数ξ2-0.002 294 9电堆质量比热乘mstCp,st/(kJ·K-1490
电压经验参数ξ3-9.518×10-5法拉第常数F96 485
电压经验参数ξ40.000 148 05空气气体常数Ra/[J·(kg·K)-1286.9
电压经验参数ξ50.000 249 24氢气气体常RH2/[J·(kg·K)-14124
电压经验参ξ6-6.872×10-7氧气气体常RO2/[J·(kg·K)-1259.8
电压经验参数ξ73.26×10-7氮气气体常RN2/[J·(kg·K)-1296.8
MAP图拟合参数P00288.2水蒸气常数Rv/[J·(kg·K)-1461.5
MAP图拟合参P01-0.000 463 1热比系数γ1.4
MAP图拟合参数P10-336.9转动惯量Jcp/(kg?m2-5.28×10-5
MAP图拟合参数P20-74.51供应歧管容积Vs/m30.005
MAP图拟合参P02-4.166×10-8环境压力Patm/106 Pa1.013 25
MAP图拟合参数P110.006 191环境温度Tatm/K298.15

Fig.2

Simulation model verification"

Fig.3

Principle diagram of HOSM observer"

Fig.4

Input current diagram"

Fig.5

Comparison of HOSM and SMO observation"

Fig.6

Observation comparison chart ofthree measurements"

Table 2

Comparison of observation error ISE"

观测对象观测器
HOSMSMO
阳极氢气分压/Pa6 28982 520
阳极水蒸气分压/Pa216.7194.3
阴极氧气分压/Pa4 85428 260
阴极氮气分压/Pa4 464122 700
空压机电机转速/(rad·s-1821.445 070
供应管气压/Pa9 03898 250
供应管气体质量/kg3.996×10-71.563×10-6
阴极出气管压力/Pa551.6575.9
电堆阴极温度/K0.344 10.876 5
电堆阳极温度/K4.840.779 8
电堆温度/K3.693×10-85.354×10-13
电堆输出电压/Pa6.348154.8
空压机输出流量/(kg·s-12.163×10-71.78×10-6
1 张鉴,华青松,郑莉莉, 等.质子交换膜燃料电池建模综述[J]. 电源技术, 2019, 43(6): 1051-1053, 1082.
Zhang Jian, Hua Qing-song, Zheng Li-li, et al. A review of proton exchange membrane fuel cell modeling[J]. Power Technology, 2019, 43(6): 1051-1053, 1082.
2 文泽军, 闵凌云, 谢翌, 等. 质子交换膜燃料电池建模与控制的综述[J]. 电源技术, 2018, 42(11): 1757-1760.
Wen Ze-jun, Min Ling-yun, Xie Yi, et al. A review on modeling and control of proton exchange membrane fuel cells[J]. Power Technology, 2018, 42(11): 1757-1760.
3 Deng H, Li Q, Liu Z, et al. Low frequency current ripple mitigation of two stage three-phase PEMFC generation systems[J]. Journal of Power Electronics, 2016, 16(6): 2243-2257.
4 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J].吉林大学学报: 工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy for fuel cell buses based on the principle of minimal value[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
5 李飞, 赵冬冬, 皇甫宜耿, 等. 适用于PEMFC系统状态估计的鲁棒非线性观测器[J]. 电源学报, 2019, 17(2): 19-25.
Li Fei, Zhao Dong-dong, Huangfu Yi-geng, et al. Robust nonlinear observer for state estimation of PEMFC systems[J]. Journal of Power Sources, 2019, 17(2): 19-25.
6 Yuan H, Dai H F, Wei X Z, et al. Model-based observers for internal states estimation and control of proton exchange membrane fuel cell system: a review[J]. Journal of Power Sources, 2020, 468: No. 228376.
7 Pukrushpan J T, Stefanopoulou A G, Peng H. Control of fuel cell breathing[J]. IEEE Control Systems Magazine, 2004, 24(2): 30-46.
8 Wang Y X, Chen Q, Ou K, et al. Time delay thermal control of a compact proton exchange membrane fuel cell against disturbances and noisy measurements[J]. Energy Conversion and Management, 2021, 244: No. 114444.
9 葛乐, 吉佩丝, 杨忠, 等. 基于扩张状态观测器的PEMFC电堆温度控制[J].电源技术, 2016, 40(5): 1020-1022, 1032.
Ge Le, Ji Pei-si, Yang Zhong, et al. Temperature control of PEMFC power stack based on expansion state observer[J]. Power Technology, 2016, 40(5): 1020-1022, 1032.
10 Rakhtala S M, Noei A R, Ghaderi R, et al. Control of oxygen excess ratio in a PEM fuel cell system using high-order sliding-mode controller and observer[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2015, 23(1): 255-278.
11 Pilloni A, Pisano A, Usai E. Observer-based air excess ratio control of a PEM fuel cell system via high-order sliding mode[J]. IEEE Transactions on Industrial Electronics, 2015, 62(8): 5236-5246.
12 邓惠文, 李奇, 崔幼龙, 等. 基于多边界层的RNO质子交换膜燃料电池发电系统状态估计研究[J]. 中国电机工程学报, 2019, 39(5): 1532-1543.
Deng Hui-wen, Li Qi, Cui You-long, et al. Study on state estimation of RNO proton exchange membrane fuel cell power generation system based on multiple boundary layers[J]. Chinese Journal of Electrical Engineering, 2019, 39(5): 1532-1543.
13 Piffard M, Gerard M, Da Fonseca R, et al. Sliding mode observer for proton exchange membrane fuel cell: automotive application[J]. Journal of Power Sources, 2018, 388: 71-77.
14 Liu J X, Lin W Y, Alsaadi F, et al. Nonlinear observer design for PEM fuel cell power systems via second order sliding mode technique[J]. Neurocomputing, 2015, 168: 145-151.
15 Sankar K, Jana A K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system[J]. Energy Conversion and Management, 2018, 171: 541-565.
16 Sankar K, Jana A K. Nonlinear control of a PEM fuel cell integrated system with water electrolyzer[J]. Chemical Engineering Research and Design, 2021, 171: 150-167.
17 洪凌. 车用燃料电池发电系统氢气回路控制[D].杭州:浙江大学控制科学与工程学院,2017.
Hong Ling. Hydrogen circuit control for automotive fuel cell power generation system[D]. Hangzhou: School of Control Science and Engineering, Zhejiang University, 2017.
18 Li D Z, Li C, Gao Z Q, et al. On active disturbance rejection in temperature regulation of the proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 283: 452-463.
19 Zhao X Q, Li Y K, Liu Z X, et al. Thermal management system modeling of a water-cooled proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2015, 40(7): 3048-3056.
20 Kunusch C, Puleston P F, Mayosky M A, et al. Control-oriented modeling and experimental validation of a PEMFC generation system[J]. IEEE Transactions on Energy Conversion, 2011, 26(3): 851-861.
21 Wang Y, Li H, Feng H, et al. Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID[J]. Energy Conversion and Management, 2021, 249: No. 114851.
[1] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[2] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[3] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[4] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[5] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[6] Jin-wu GAO,Yi-lin WANG,Hua-yang LIU,Yi-da WANG. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2156-2167.
[7] Feng-xiang CHEN,Jun-yu ZHANG,Feng-lai PEI,Ming-tao HOU,Qi-peng LI,Pei-qing LI,Yang-yang WANG,Wei-dong ZHANG. Modeling and selection scheme of proton exchange membrane fuel cell hydrogen supply system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1982-1995.
[8] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[9] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[10] Heng ZHANG,Zhi-gang ZHAN,Ben CHEN,Pang-chieh SUI,Mu PAN. Anisotropic transport properties of gas diffusion layer based on pore⁃scale model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2055-2062.
[11] Guang-di HU,Hao JING,Cheng LI,Biao FENG,Xiao-dong LIU. Multi⁃objective sliding mode control based on high⁃order fuel cell model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2182-2191.
[12] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[13] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[14] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[15] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!