Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (3): 772-780.doi: 10.13229/j.cnki.jdxbgxb20221450

Previous Articles    

Localization algorithm of vehicular sensor based on multi⁃mode interaction

Jian ZHANG1(),Jin-bo LIU1,Yuan GAO1,Meng-ke LIU1,Zhen-hai GAO2(),Bin YANG2   

  1. 1.Department of Intelligent Driving,Intelligent Connected Vehicle R&D Institute of China FAW,Changchun 130062,China
    2.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2022-11-14 Online:2023-03-01 Published:2023-03-29
  • Contact: Zhen-hai GAO E-mail:zhangjian3@faw.com.cn;gaozh@jlu.edu.cn

Abstract:

A multi-mode interactive filtering algorithm that integrates Global Positioning System (GPS) and vehicle sensor information was proposed, so that the vehicle can adapt to a variety of driving conditions. The longitudinal and lateral motion model were built to describe the full coverage prediction of the expected driving position of the vehicle. The credibility evaluation of GPS signal was realized by data-driven neural network and vehicle motion model. The accurate estimation of process error and measurement error was realized by interactive filtering and probability updating between vehicle motion models. The positioning fusion algorithm was verified in the real vehicle testing environment. The results show that the proposed algorithm can improve the positioning accuracy of the multi-sensor positioning system and provide more accurate position estimation results in the case of unstable signals.

Key words: vehicle engineering, signal credibility evaluation, interacting multiple model, fusion positioning

CLC Number: 

  • U463.67

Fig.1

System chart"

Fig.2

Test data acquisition"

Fig.3

Linear regression analysis diagram of neural network training"

Fig.4

Vehicle kinematics model"

Fig.5

Schematic diagram of IMM-KF algorithm"

Fig.6

Kalman filtering process"

Fig.7

Related physical picture of experimental sample vehicle"

Table 1

Related parameters of experimental equipment of IMM-KF test platform"

实验设备型号精度
控制器MicroAutoboxII控制器-
LEN-GZ1903RTK模式

水平精度:0.01 m

航向精度:0.15°

DGNSS模式

水平精度:0.60 m

航向精度:1.00°

Fig.8

Curve of vehicle speed change"

Fig.9

Comparison of positioning information in straight driving condition"

Fig.10

Comparison of positioning information in straight driving condition(partial enlarged detail)"

Fig.11

Curve of positioning error"

Fig.12

Comparison of trajectory curvature"

Fig.13

Curve of vehicle speed change"

Fig.14

Comparison of positioning information of lane change condition"

Fig.15

Curve of positioning error"

Fig.16

Comparison of trajectory curvature change"

Fig.17

Results of composite test scenario"

Fig.18

Curve of positioning error"

1 管欣, 闫冬, 高振海. 基于惯性导航和实时差分全球定位系统的汽车运动状态测试系统[J]. 吉林大学学报: 工学版, 2006, 36(1): 14-19.
Guan Xin, Yan Dong, Gao Zhen-hai. Vehicle motion state test system based on inertial navigation and real-time differential global positioning system[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(1): 14-19.
2 肖婷婷. 视觉里程计/IMU辅助GPS融合定位算法研究[D]. 上海: 华东师范大学通信与电子工程学院, 2019.
Xiao Ting-ting. Research on visual odometer /IMU assisted GPS fusion positioning algorithm[D]. Shanghai: School of Communication and Electronic Engineering, East China Normal University, 2019.
3 李昂,王伟,吴佳楠. 低成本IMU/GPS组合导航系统设计[J]. 测控技术, 2012, 31(8): 12-15, 18, 19.
Li Ang, Wang Wei, Wu Jia-nan. Design in low-cost integrated navigation system[J]. Measurement & Control Technology, 2012, 31(8): 12-15, 18, 19.
4 吕建新, 周翟和, 伏家杰, 等. 自适应联邦卡尔曼滤波在机器人组合导航系统中的应用研究[J]. 测控技术, 2017, 36(6): 15-19.
Lv Jian-xin, Zhou Zhai-he, Fu Jia-jie, et al. Application of adaptive federated Kalman filter in robot integrated navigation system[J]. Measurement and Control Technology, 2017, 36(6): 15-19.
5 高振海, 于泳. 提高车载GPS定位精度的IMM-KF算法及建模[C]∥2015中国汽车工程学会年会, 上海, 中国, 2015: 21-23.
6 钱华明, 陈亮. 基于当前统计模型的机动目标自适应跟踪算法[J]. 系统工程与电子技术, 2011(11): 2154-2158.
Qian Hua-ming, Chen Liang. Adaptive tracking algorithm for maneuvering target based on current statistical model[J]. Systems Engineering and Electronics, 2011(11): 2154-2158.
7 Jo K, Chu K, Sunwoo M. Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 329-343.
8 Han H, Wang J, Mingyi D U. GPS/BDS/INS tightly coupled integration accuracy improvement using an improved adaptive interacting multiple model with classified measurement update[J]. Chinese Journal of Aeronautics, 2018, 31(3): 142-152.
9 He Z, Bu X, Yang H, et al. Interacting multiple model cubature Kalman filter for geomagnetic/ infrared projectile attitude measurement[J]. Measurement, 2021, 174(1): No.109077.
10 Ndjeng A N, Gruyer D, Glaser S, et al. Low cost IMU-odometer-GPS ego localization for unusual maneuvers[J]. Information Fusion, 2011, 12(4): 264-274.
11 Malleswaran M, Vaidehi V, Irwin S, et al. IMM-UKF-TFS model-based approach for intelligent navigation[J]. Journal of Navigation, 2013, 66(6): 859-877.
12 Jo K, Chu K, Sunwoo M. Interacting multiple model filter-based sensor fusion of GPS with in-vehicle sensors for real-time vehicle positioning[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1): 329-343.
13 Wang Xiang-hua, Yang Xin-yu, Qin Zheng. Hierarchical interacting multiple model algorithm based on improved current model[J]. Journal of Systems Engineering and Electronics, 2010, 21(6): 961-967.
14 王忠军. GPS车载导航的交互式多模型算法[J]. 测绘科学技术学报, 2009, 26(3): 170-173.
Wang Zhong-jun. Interactive multi-model algorithm for GPS vehicle navigation [J]. Journal of Science and Technology of Surveying and Mapping, 2009, 26(3): 170-173.
15 吉波, 谭震, 樊建文, 等. 基于交互式多模型的飞机编队相对导航算法研究[J]. 航空计算技术, 2014, 44(2): 81-86.
Ji Bo, Tan Zhen, Fan Jian-wen, et al. Research on relative navigation algorithm of aircraft formation based on interactive multi-model[J]. Aeronautical Computing Technology, 2014, 44(2): 81-86.
[1] Yan-tao TIAN,Fu-qiang XU,Kai-ge WANG,Zi-xu HAO. Expected trajectory prediction of vehicle considering surrounding vehicle information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 674-681.
[2] Song GAO,Yu-qiong WANG,Yu-hai WANG,Yi XU,Ying-chao ZHOU,Peng-wei WANG. Longitudinal and lateral integrated feedback linearization control for intelligent vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 735-745.
[3] Bo XIE,Rong GAO,Fu-qiang XU,Yan-tao TIAN. Stability control of human⁃vehicle shared steering system under low adhesion road conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 713-725.
[4] Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662.
[5] Yan-tao TIAN,Yan-shi JI,Huan CHANG,Bo XIE. Deep reinforcement learning augmented decision⁃making model for intelligent driving vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 682-692.
[6] Ke HE,Hai-tao DING,Nan XU,Kong-hui GUO. Enhanced localization system based on camera and lane markings [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 663-673.
[7] Bing ZHU,Tian-xin FAN,Jian ZHAO,Pei-xing ZHANG,Yu-hang SUN. Accelerate test method of automated driving system based on hazardous boundary search [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 704-712.
[8] Deng-feng WANG,Hong-li CHEN,Jing-xin NA,Xin CHEN. Failure comparison of single and double lap joints after high temperature aging [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 346-354.
[9] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[10] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[11] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[12] Cheng LI,Hao JING,Guang-di HU,Xiao-dong LIU,Biao FENG. High⁃order sliding mode observer for proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2203-2212.
[13] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[14] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[15] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!