Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (4): 1078-1084.doi: 10.13229/j.cnki.jdxbgxb.20211416

Previous Articles    

Multi-objective decision-making on emergency material distribution under uncertain demand based on robust optimization

Hai-bo LONG1(),Jia-qi YANG1(),Liang YIN1,Xue-yu ZHAO2,Zi-quan XIANG1   

  1. 1.School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan 430063,China
    2.School of Economics and Management,Hubei University of Education,Wuhan 430205,China
  • Received:2021-12-22 Online:2023-04-01 Published:2023-04-20
  • Contact: Jia-qi YANG E-mail:longhaibo2012@163.com;styjq@whut.edu.cn

Abstract:

Aiming at the uncertainty and suddenness of emergency material distribution decision-making, a multi-objective robust optimization-based emergency material distribution decision model under uncertain demand is proposed. Based on the analysis of the randomness of emergency demand, the demand uncertainty risk of emergency logistics facilities and the risk on road network interruption, it is determined that maximum sum of satisfaction with the rescue time of the material demand point, minimum the total system cost, and sum of rescue time of the material reaches the demand point as the goal, a multi-objective robust optimization model is constructed and solved by Matlab software. Taking a natural disaster in a mountainous area as an example, the validity and correctness of the multi-objective robust optimization model are verified. The results show that in the distribution of emergency supplies under uncertain demand, decision maker can weigh the pros and cons based on the multi-objective robust optimization model in this paper, and formulate a rescue plan that not only has the ability to deal with risks, but also can respond quickly.

Key words: emergency supplies distribution route, robust optimization, demand uncertainty, multi-objective optimization

CLC Number: 

  • U15

Table1

Emergency response facility points for level 1"

一级应急点坐标/km建设费用/元容量/t
a1(17,0)53 28475
a2(0,35)70 64575
a3(26,38)56 91275
a4(50,74)57 34075

Table 2

Emergency response facility points for level 2"

二级应急点坐标/km建设费用/元容量/t二级应急点坐标/km建设费用/元容量/t
k1(16,90)35 26315k5(23,16)26 31415
k2(25,68)27 88415k6(15,12)21 85315
k3(37,55)26 11215k7(10,25)31 67415
k4(26,25)23 64515k8(16,48)34 75815

Table 3

Disaster demand point"

需求点坐标/km容量/t需求点坐标/km容量/t需求点坐标/km容量/t
t1(31,63)2.172 322t8(25,34)2.090 059t15(6,15)2.076 513
t2(21,21)1.660 612t9(25,26)1.703 085t16(20,39)1.703 709
t3(20,15)2.102 983t10(17,12)2.081 522t17(39,60)2.304 982
t4(13,26)1.965 038t11(16,32)2.724 638t18(35,44)1.520 833
t5(13,14)2.783 066t12(24,51)2.941 742t19(17,6)1.909 298
t6(22,34)2.452 009t13(19,65)2.122 999t20(39,31)2.995 854
t7(33,36)2.606 505t14(16,23)2.868 852

Fig.1

Distribution of objective function values in different contexts"

Table 4

Mean value of objective function with different control coefficients"

目标函数值控制系数
012345
115.78415.78415.78415.78415.78415.784
2265 456.500279 197.500287 962.100295 639.800287 662.300289 924.800
326.87629.11527.95627.57430.30730.324
Z24.45925.73226.02626.41026.47826.617
目标函数值控制系数
67891~9均值10
115.78415.78415.78415.78415.78415.784
2294 972.100298 899.500301 319.200299 932.400292 834.411329 269.200
329.42029.70030.02930.53129.44028.543
Z26.73927.03127.24227.25926.61528.622
1 范琪, 王炜, 华雪东, 等. 基于广义出行费用的城市综合交通方式优势出行距离研究[J]. 交通运输系统工程与信息, 2018, 18(4): 25-31.
Fan Qi, Wang Wei, Hua Xue-dong, et al. Dominant transportation distance for multi transportation modes in urban integrated transportation[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4): 25-31.
2 李彦瑾, 罗霞, 车国鹏, 等. 基于GERT网络的应急救援关键路段识别[J]. 交通运输系统工程与信息, 2017, 17(04): 166-172.
Li Yan-jin, Luo Xia, Che Guo-peng, et al. Critical road links identification in emergency rescue based on GERT network[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 166-172.
3 李健, 周漪, 刘威. 上海市历史城区震后应急救援路网评价与优化[J]. 交通运输系统工程与信息, 2017, 17(4): 166-172.
Li Jian, Zhou Yi, Liu Wei. The evaluation and optimization of post-earthquake emergency rescue road network in Shanghai historic area[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(4): 166-172.
4 项昀, 王炜, 郑敦勇, 等. 区域综合网络货运交通方式的优势运距研究[J].交通运输系统工程与信息, 2016, 16(6): 33-39.
Xiang Yun, Wang Wei, Zheng Dun-yong, et al. Dominant transportation distance for multi transportation modes in regional integrated freight network[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(6): 33-39.
5 代颖, 马祖军.应急物流系统中的随机定位‒路径问题[J].系统管理学报,2012, 21(2): 212-217.
Dai Ying, Ma Zu-jun. Stochastic location-path problem in emergency logistics system[J]. Journal of Systems Management, 2012, 21(2): 212-217.
6 Ozdamar L, Ekinci E, Kucukyzici B. Emergency logistics planning in natural disasters[J]. Annals of Operations Research, 2004, 129: 217-245.
7 Chang K L, Zhou H, Chen G J, et al. Multiobjectivelocation routing problem considering uncertain dataafter disasters[J].Discrete Dynamics in Nature and Society, 2017, 2017(3): 1-7.
8 Juan Carlos Martín, Román Concepción, Juan Carlos García-Palomares, et al. Spatial analysis of the competitiveness of the high-speed train and air transport: the role of access to terminals in the Madrid–Barcelona corridor[J]. Transportation Research Part A, 2014, 69(12): 1099-1114.
9 Ipek N S, Ram M P, Chandra R B. Accommodating spatial correlation across choice alternatives in discrete choice models: an application to modeling residential location choice behavior[J]. Journal of Transport Geography,2010,19(2): 298-313.
10 Filipe Rodrigues, Agostinho Agra. An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times[J]. European Journal of Operational Research, 2021, 295(2): 499-516.
11 Xiang Zi-quan, Yang Jia-qi, et al. A solution to resource allocation problem based on discrete grey wolf optimizer[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2021, 49(8): 81-85.
12 Gumte K M, Devi P P, Miriyala S S, et al. Data driven robust optimization for handling uncertainty in supply chain planning models[J]. Chemical Engineering Science, 2021, 246: No.116889.
13 Abdalla O H, Abu A M A, Ahmed A S. Generation expansion planning considering unit commitment constraints and data-driven robust optimization under uncertainties[J]. International Transactions on Electrical Energy Systems, 2021, 31(6): 1-19.
14 Xiang Zi-quan, Yang Jia-qi, Naseem M H, et al. Solving the multi-objective transportation decision-making problem based on improved S-type membership function[J]. Journal of Mathematics,2021: No.4169352.
[1] Ying HE,Jun-song FAN,Wei WANG,Geng SUN,Yan-heng LIU. Joint optimization of secure communication and trajectory planning in unmanned aerial vehicle air⁃to⁃ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 913-922.
[2] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
[3] Zhao-ming CHEN,Jin-song ZOU,Wei WANG,Ming-quan SHI. Multi-objective optimization of casting-forging dynamic forming based on improved particle swarm neural network and finite element analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1524-1533.
[4] Yong-jie MA,Min CHEN. Dynamic multi⁃objective optimization algorithm based on Kalman filter prediction strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1442-1458.
[5] Bin-xiang JIANG,Tong-tong JIANG,Yong-lei WANG. Optimization of consensus algorithm for drug detection block chain based on cultural genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 684-692.
[6] Han HUANG,Qing-hao YAN,Zhi-xin XIANG,Xin-tao YANG,Jin-bao CHEN,Shu-cai XU. Crashworthiness investigation and optimization of bionic multi⁃cell tube based on shrimp chela [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 716-724.
[7] Li-jie ZHANG,Xi-ta A,Xiao TIAN,Wen LI. Multi⁃objective optimization design of accelerated degradation test based on Gamma process [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 361-367.
[8] Bao-feng SUN,Xin-xin REN,Zai-si ZHENG,Guo-yi Li. Multi⁃objective flow shop optimal scheduling considering worker's load [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 900-909.
[9] Bing-hai ZHOU,Zhao-xu HE. Static semi⁃kitting strategy⁃based multi⁃objective just⁃in⁃time material distribution scheduling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 910-916.
[10] Ji-cheng HUANG,Cheng SHEN,Ai-min JI,Xian-wang LI,Bin ZHANG,Kun-peng TIAN,Hao-lu LIU. Optimization of cutting⁃conveying key working parameters of hemp harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 772-780.
[11] Bing-hai ZHOU,Qiong WU. Balancing and bi⁃objective optimization of robotic assemble lines [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 720-727.
[12] Fang-wu MA,Li HAN,Liang WU,Jin-hang LI,Long-fan YANG. Damping optimization of heavy⁃loaded anti⁃vibration platform based on genetic algorithm and particle swarm algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1608-1616.
[13] Xue-shen CHEN,Tao CHEN,Tao WU,Xu MA,Ling-chao ZENG,Lin-tao CHEN. Design and experiment on harvester for winter planting potato of straw coverage [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 749-757.
[14] Yin-ping LI,Tian-xu JIN,Li LIU. Design and dynamic characteristic simulation of pantograph⁃catenary continuous energy system for pure electric LHD [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 454-463.
[15] Fang-wu MA,Hong-yu LIANG,Ying ZHAO,Meng YANG,Yong-feng PU. Multi⁃objective crashworthiness optimization design of concave triangles cell structure with negative Poisson′s ratio [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 29-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!