Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (7): 2143-2151.doi: 10.13229/j.cnki.jdxbgxb.20211002

Previous Articles    

Identification of critical fragments cutting load of simulated lunar soil based on support vector machine

Ye TIAN1(),Nan-nan LI1,Jun-wei LIU2,Sheng-yuan JIANG2(),Chu WANG3,Wei-wei ZHANG2   

  1. 1.College of Light Industry,Harbin University of Commerce,Harbin 150028,China
    2.Aerospace Mechanism and Control Research Center,Harbin Institute of Technology,Harbin 150001,China
    3.Beijing Aerospace Vehicle Overall Design Department,China Academy of Space Technology,Beijing 100094,China
  • Received:2021-10-03 Online:2023-07-01 Published:2023-07-20
  • Contact: Sheng-yuan JIANG E-mail:tian8154@126.com;jiangshy@hit.edu.cn

Abstract:

The critical fragments whose average diameter is slightly larger than or equal to the diameter of the bit coring hole will produce two migration modes: hole bottom output and hole wall input in the process of coring drilling, which will lead to the change of drilling load. By establishing the cutting model, it is obtained that the influence of cutting speed on cutting force is small and can be ignored in low-speed cutting. The cutting test is carried out on the critical scale particles with different particle sizes, and the variation curve of cutting load with time is obtained. The cutting load is identified by support vector machine (SVM). The results show that the recognition rate of homogeneous simulated lunar soil cutting load is 100%, and the recognition rate of simulated lunar soil cutting load with critical scale particles is more than 95.5%. The research results can provide a reference for the on-line identification technology of lunar unmanned drilling sampling.

Key words: terramechanics, simulated lunar soil, support vector machine, cutting speed, cutting force

CLC Number: 

  • TU41

Fig.1

Lunar surface sampling diagram of detector"

Fig.2

Transport characteristics of critical scaleparticles"

Fig.3

Transport mode of critical scale particles"

Fig. 4

Force analysis of cutting edge"

Fig.5

Simulated lunar soil sample"

Table 1

Physical and mechanical parameters of homogeneous lunar soil"

机械参数月壤模拟月壤
密度/(g·cm-31.3~2.292.1
内摩擦角/(°)25~5034.96
内聚力/kPa0.26~1.80.35

Fig.6

Schematic diagram of cutting system"

Table 2

Conversion of rotation speed to linear speed"

旋转速度ω/(r·min-180100120
切削速度v/(m·s-10.06120.07870.0942

Fig.7

Cutting homogeneous simulated lunar soil"

Fig.8

Variation curve of average cutting resistance"

Fig.9

Time domain image of cutting parameters"

Fig.10

Actual classification and prediction classification diagram of test set"

Fig.11

Time domain curve of cutting force"

Fig.12

Migration characteristics of hole bottom output of critical fragments"

Fig.13

Migration characteristics of hole wall input of critical fragments"

Fig.14

Recognition rate"

1 庞之浩.嫦娥五号月球“挖土”归来[J].科学, 2021, 73(1): 34-38, 644.
Pang Zhi-hao. The return of chang'e-5 lunar "earth digging" [J]. Science, 2021, 73 (1): 34-38, 64,4.
2 邹猛, 李建桥, 贾阳, 等. 月壤静力学特性的离散元模拟[J].吉林大学学报:工学版,2008,38(2):383-387.
Zou Meng, Li Jian-qiao, Jia Yang, et al. Discrete element simulation of lunar soil static properties[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,38(2): 383-387.
3 赵德明, 姜生元, 唐德威, 等. 月球次表层回转取样钻头构型设计[J].吉林大学学报:工学版, 2017, 47(4): 1149-1158.
Zhao De-ming, Jiang Sheng-yuan, Tang De-wei, et al. Configuration design of lunar subsurface rotary sampling bit[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(4): 1149-1158.
4 姜水清, 刘荣凯. 铲挖式表层月壤采样器设计与试验[J]. 中国空间科学技术, 2019, 39(1):49-58.
Jiang Shui-qing, Liu Rong-kai. Design and test of shovel digging surface lunar soil sampler[J]. China Space Science and Technology, 2019, 39(1): 49-58.
5 郑燕红, 邓湘金, 庞勇, 等. 月球风化层钻取采样过程密实度分类研究[J]. 航空学报, 2020, 41(4):155-165.
Zheng Yan-hong, Deng Xiang-jin, Pang Yong, et al. Study on compactness classification during drilling and sampling of lunar regolith[J]. Acta Aeronautica Sinica, 2020, 41 (04): 155-165.
6 Tian Ye, Tang Bo, Yang Fei, et al. Lunar critical fragment layer simulant identification using an impact method[J]. Acta Astronautica, 2020, 173(6): 294-302.
7 王奎洋, 何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报:工学版,2022,52(8):1770-1776.
Wang Kui-yang, He Ren. Braking intention recognition method based on support vector machine [J]. Journal of Jilin University (Engineering and Technology Edition),2022,52(8): 1770-1776.
8 Fan J L, Wu L F, Ma X, et al. Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions[J]. Renewable Energy: An International Journal, 2020, 145: 2034-2045.
9 Zou M, Xue L, Gai H, et al. Identification of the shear parameters for lunar regolith based on a GA-BP neural network[J]. Journal of Terramechanics, 2020, 89:21-29.
10 唐钧跃, 邓宗全, 陈崇斌, 等. 面向深空探测的星球钻取采样技术综述[J]. 宇航学报, 2017, 38(6): 555-565.
Tang Jun-yue, Deng Zong-quan, Chen Chong-bin, et al. Overview of planet drilling and sampling technology for deep space exploration[J]. Journal of Astronautics, 2017, 38(6): 555-565.
11 Gonzalez Ramon, Apostolopoulos Dimi, Iagnemma Karl. Slippage and immobilization detection for planetary exploration rovers via machine learning and proprioceptive sensing[J]. Journal of Field Robotics, 2018, 35(2):231-247.
12 Mauro Dimastrogiovanni, Florian Cordes, Giulio Reina. Terrain estimation for planetary exploration robots[J]. Applied Sciences, 2020, 10(17): 6044-6052.
13 Xue L, Li J, Zou M, et al. In situ identification of shearing parameters for loose lunar soil using least squares support vector machine[J]. Aerospace Science & Technology, 2016, 53(6):154-161.
14 薛琮琳, 郭剑辉, 马玲玲. 基于空间特征的多平面支持向量机地形分类[J]. 计算机与数字工程, 2019, 47 (5):1217-1222.
Xue Cong-lin, Guo Jian-hui, Ma Ling-ling. Multi plane support vector machine terrain classification based on spatial features[J]. Computer and digital engineering, 2019, 47 (05): 1217-1222.
15 田野. 双螺旋阻隔式月壤取芯钻具设计及其性能研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
Tian Ye. Design and performance Research of double screw barrier lunar soil coring tool[D]. Harbin:Harbin University of Technology, 2015.
16 崔建国, 田野, 刘君巍, 等. 月壤临界尺度颗粒运移特性对钻采阻力影响研究[J]. 岩土工程学报, 2021, 43(9): 1715-1723.
Cui Jian-guo, Tian Ye, Liu Jun-wei, et al. Study on the influence of critical scale particle transport characteristics of lunar soil on drilling and production resistance[J]. Journal of Geotechnical Engineering, 2021, 43 (9):1715-1723.
17 Wheeler P, Godwin R. Soil dynamics of single and multiple tines at speeds up to 20 km/h[J]. Journal of Agricultural Engineering Research, 1996, 63(3): 243-249.
18 王传留, 孙友宏, 刘宝昌,等. 仿生耦合孕镶金刚石钻头的试验及碎岩机理分析[J]. 中南大学学报:自然科学版, 2011, 42(5): 1321-1325.
Wang Chuan-liu, Sun You-hong, Liu Bao-chang, et al. Test and rock breaking mechanism analysis of bionic coupling impregnated diamond bit[J]. Journal of Central South University(Natural Science Edition), 2011, 42(5): 1321-1325.
19 鄢泰宁. 岩土钻掘工艺学[M]. 长沙:中南大学出版社,2014.
20 田野.月球表层土壤初级包装装置研究[J]. 包装工程, 2014, 35(11):76-79, 90.
Tian Ye. Research on primary packaging device of lunar topsoil[J]. Packaging Engineering, 2014, 35 (11): 76-79, 90.
21 Li C, Xie K, Liu A. The preparation and characterization of NEU-1 Lunar soil simulants[J]. Energy Materials, 2019, 71: 1471-1476.
22 Just G H, Joy K H, Roy M J, et al. Geotechnical characterisation of two new low-fidelity lunar regolith analogues (UoM-B and UoM-W) for use in large-scale engineering experiments[J]. Acta Astronautica, 2020, 173(8): 414-424.
23 宋蕾, 徐佼, 唐红, 等. 模拟月壤成型研究现状[J]. 矿物学报, 2020, 40(1): 47-57.
Song Lei, Xu Jiao, Tang Hong, et al. Research status of simulated lunar soil formation[J]. Journal of minerals, 2020, 40(1): 47-57.
24 邹猛, 李建桥, 刘国敏, 等. 模拟月壤地面力学性质试验研究[J]. 岩土力学, 2011, 32(4): 1057-1061.
Zou Meng, Li Jian-qiao, Liu Guo-min, et al. Experimental study on ground mechanical properties of simulated lunar soil[J]. Geotechnical Mechanics, 2011, 32(4): 1057-1061.
25 邹猛, 李建桥, 何玲, 等. 不同粒径分布模拟月壤承压特性试验研究[J]. 航空学报, 2012, 33(12): 2338-2346.
Zou Meng, Li Jian-qiao, He Ling, et al. Experimental study on pressure bearing characteristics of simulated lunar soil with different particle size distribution[J]. Journal of Aeronautics, 2012, 33(12): 2338-2346.
26 郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004, 24(4): 14-19.
Zheng Yong-chun, Ouyang Zi-yuan, Wang Shi-jie, et al. Physical and mechanical properties of lunar soil[J]. Minerals and Rocks, 2004, 24 (4): 14-19.
27 刘天喜, 马亮, 梁磊, 等. 深层月壤采样钻具参数影响分析[J]. 机械工程学报, 2018, 54(9):27-36.
Liu Tian-xi, Ma Liang, Liang Lei, et al. Influence analysis of drilling tool parameters for deep lunar soil sampling[J]. Journal of Mechanical Engineering, 2018, 54(9): 27-36.
28 Rostami O, Kaveh M. Optimal feature selection for SAR image classification using biogeography-based optimization (BBO), artificial bee colony (ABC) and support vector machine (SVM): a combined approach of optimization and machine learning[J]. Computational Geosciences, 2021, 25(3):911-923.
[1] En-shen LONG,Guang-ze BAN. Idle noise diagnosis algorithm of air-conditioning refrigeration compressor based on wavelet packet extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1929-1934.
[2] Jian WU,Bin XU. Displacement interval prediction model and simulation of accumulation landslide based on ceemdan theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 562-568.
[3] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[4] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[5] Long XUE,Meng YAO,Li-ben LI,Yin-wu LI,Xiang-jin DENG,Jian-qiao LI,Meng ZOU. Experimental analysis of mechanical properties of surface lunar soil based on lunar indentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 497-503.
[6] Wei LUO,Bo LU,Fei CHEN,Teng MA. Fault diagnosis method of NC turret based on PSO⁃SVM and time sequence [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 392-399.
[7] Chun-ping HOU,Chun-yue ZHAO,Zhi-peng WANG,Hai-rui TIAN. Video anomaly detection algorithm based on effective anomaly sample construction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1823-1829.
[8] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
[9] Kang WANG,Meng YAO,Li-ben LI,Jian-qiao LI,Xiang-jin DENG,Meng ZOU,Long XUE. Mechanical performance identification for lunar soil in lunar surface sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1146-1152.
[10] Xiong-fei LI,Jing WANG,Xiao-li ZHANG,Tie-hu FAN. Multi-focus image fusion based on support vector machines and window gradient [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 227-236.
[11] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[12] Hong-wei ZHAO,Ming-zhao LI,Jing LIU,Huang-shui HU,Dan WANG,Xue-bai ZANG. Scene classification based on degree of naturalness and visual feature channels [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1668-1675.
[13] Yang LU,Shi-gang WANG,Wen-ting ZHAO,Yan ZHAO. Facial expression recognition based on separability assessment of discrete Shearlet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1715-1725.
[14] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[15] Jun CHEN,Qi⁃feng ZHANG,Ai⁃qun ZHANG,Du⁃si CAI. In⁃situ autonomous observation method based onhadal fish recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 953-962.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!