Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2897-2907.doi: 10.13229/j.cnki.jdxbgxb.20221604

Previous Articles    

Dynamic characteristics of reinforced soil-rock mixture

Li-hua LI1,2(),Hao-ran KANG1,2,Xin ZHANG1,2,Heng-lin XIAO1,2(),Yi-ming LIU1,2,Xin-long ZHOU1,2   

  1. 1.School of Civil Engineering,Architecture and Environment,Hubei University of Technology,Wuhan 430068,China
    2.Hubei Ecological Road Research and Engineering Center,Wuhan 430068,China
  • Received:2022-12-16 Online:2024-10-01 Published:2024-11-22
  • Contact: Heng-lin XIAO E-mail:researchmailbox@163.com;xiaohenglin_0909@163.com

Abstract:

In order to investigate the dynamic properties of SRM under cyclic loading, the law of permanent deformation of soil-rock mixture (SRM) with two different particle size types, the evolution of hysteresis circle, dynamic elastic modulus and damping ratio development law of SRM under different reinforcement methods are investigated by large dynamic triaxial test. The experimental results show that the axial strain (ε)-vibration number (N) curve of the specimen under different dynamic stress amplitude is consistent with the shakedown theory and more in line with the hyperbolic model development law. The reinforcement effect significantly improves the dynamic stability of the SRM specimen; when the dynamic stress amplitude is larger, the occlusal friction effect of the SRM specimen mixed with large gravel(GL) is more significant than that of the SRM specimen mixed with small gravel(GS), and the accumulated plastic deformation is smaller. As an inhomogeneous engineering material, the hysteresis loop shows a "sawtooth" shape at low cycle times during cyclic loading. Before and after 30 loading cycles, the growth rate of the dynamic elastic modulus of the geogrid-reinforced specimen increases, and the damping ratio begins to decrease from the unstable fluctuation. Comparing different reinforcement test data, the results show that the geocell reinforcement enhances the resilient and stiffness of SRM better than the biaxial geogrid reinforcement.

Key words: geotechnical engineering, reinforced soil-rock mixture, large dynamic triaxial test, hysteresis loop, dynamic elastic modulus, damping ratio

CLC Number: 

  • TU414

Table 1

Physical parameters of test soil"

不均匀系数Cu曲率系数CC最佳含水率/%最大干密度/ (g·cm-3比重
14.53.218.3%1.812.73

Fig.1

Particle gradation curve of test soil"

Table 2

Basic physical and mechanical indicators ofcrushed stone"

颜色吸水率/%针片状含量/%毛体积相对密度γb
灰黑色0.45.02.81

Fig.2

Reinforcement used in test"

Table 3

Basic physical and mechanical indicators of geocell"

土工格室型号TGLG-PP-50-400
格室片抗拉强度/MPa24
延伸率/%7.6
断裂伸长率/%9.8
焊接处抗拉强度/(kN·m-110
最大拉伸力/MPa102.8

Fig.3

Reinforcement arrangement of SRM"

Fig.4

Exertion mode of axial loading in dynamictriaxial test"

Table 4

Design parameters of dynamic triaxial test"

试样编号围压σ3/kPa动应力幅值σd/kPa
GL-W10050、75、100、125
GS-W10050、75、100、125
GL-G1100100
GL-G3100100
GS-G1100100
GS-G3100100
GL-C1100100
GL-C3100100
GS-C1100100
GS-C3100100

Fig.5

ε-N curves of GS-W、GL-W samples"

Fig.6

Permanent deformation behavior of granular materials"

Fig.7

Relationship curves between cumulative strainrate and axial cumulative deformation of SRM"

Fig.8

Representative curves of SRM ε-N relationship"

Fig.9

Dynamic stress-strain curves of two types of SRM under different reinforcement mode"

Fig.10

Dynamic stress-strain curves of reinforced SRM under different cycle numbers"

Fig.11

Schematic diagram of typical hysteresis loop"

Fig.12

Dynamic elastic modulus of reinforced SRM"

Fig.13

Damping ratios of reinforced SRM"

Table 5

Damping ratio of two types of reinforced SRM"

试样G1G3C1C3
GL0.19080.18570.16950.1471
GS0.20050.18170.18600.1621
1 徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56, 70.
Xu Wen-jie, Hu Rui-lin. Experiment research on consolidation tests of unsaturatedsilty clay under controlled matric suction[J]. Hydrogeology & Engineering Geology, 2009, 36(4): 50-56, 70.
2 胡瑞林, 李晓, 王宇, 等. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 2020, 28(2): 255-281.
Hu Rui-lin, Li Xiao, Wang Yu, et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(2): 255-281.
3 李晓, 廖秋林, 赫建明, 等. 土石混合体力学特性的原位试验研究[J]. 岩石力学与工程学报, 2007, 191(12): 2377-2384.
Li Xiao, Liao Qiu-lin, Hao Jian-ming, et al. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 191(12): 2377-2381.
4 Crosta G B. Failure and flow development of a complex slide: the 1993 sesa landslide[J]. Engineering Geology, 2001, 59(1-2): 173-199.
5 景宏君, 张延青, 顾行文, 等. 土石混合填料大型三轴剪切试验研究[J]. 西安科技大学学报, 2019, 39(2): 270-275.
Jing Hong-jun, Zhang Yan-qing, Gu Xing-wen, et al. Large-scale triaxial shear test of soil rock mixture[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 270-275.
6 程展林, 潘家军. 土石坝工程领域的若干创新与发展[J]. 长江科学院院报, 2021, 38(5): 1-10, 16.
Cheng Zhan-lin, Pan Jia-jun. Some innovations and developments in the field of earth-rock dam engineering[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 1-10, 16.
7 Sharafisafa M, Aliabadian Z, Luming S. Crack initiation and failure development in bimrocks using digital image correlation under dynamic load[J]. Theoretical and Applied Fracture Mechanics, 2020, 109:No. 102688.
8 舒志乐, 刘新荣, 刘保县, 等. 基于分形理论的土石混合体强度特征研究[J]. 岩石力学与工程学报, 2009, 28(): 2651-2656.
Shu Zhi-le, Liu Xin-rong, Liu Bao-xian, et al. Study of strength properties of earth-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup.1): 2651-2656.
9 胡峰,李志清,胡瑞林, 等. 基于大型直剪试验的土石混合体剪切带变形特征试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 766-778.
Hu Feng, Li Zhi-qing, Hu Rui-lin, et al. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 766-778.
10 赵明华,刘建军,罗宏, 等. 土石混填体抗剪强度特性及影响因素的试验研究[J]. 岩土力学, 2017, 38(4): 965-972.
Zhao Ming-hua, Liu Jian-jun, Luo Hong, et al. Experimental studies of shear strength characteristics and influencing factors of soil-rock aggregate mixture[J]. Rock and Soil Mechanics, 2017, 38(4): 965-972.
11 夏加国,胡瑞林,高玮. 土石混合体强度特性的大型三轴试验[C]//全国工程地质学术年会论文集,成都,2016:1228-1235.
12 曹文贵, 黄文健, 王江营, 等. 土石混填体变形力学特性大型三轴试验研究[J]. 湖南大学学报:自然科学版, 2016, 43(3): 142-148.
Cao Wen-gui, Huang Wen-jian, Wang Jiang-ying, et al. Large-scale triaxial test study on deformation and intensity characteristics of soil-rock aggregate mixture[J]. Journal of Hunan University(Natural Sciences), 2016, 43(3): 142-148.
13 李丽华, 秦浪灵, 肖衡林, 等. 加筋建筑垃圾土大型动三轴试验及加筋机制探讨[J]. 岩石力学与工程学报, 2020, 39(8): 1682-1695.
Li Li-hua, Qin Lang-ling, Xiao Heng-lin, et al. Large dynamic triaxial test study on reinforcement mechanisms of reinforced construction waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1682-1695.
14 Song F, Liu H, Yang B, et al. Large-scale triaxial compression tests of geocell-reinforced sand[J]. Geosynthetics International, 2019, 26(4): 388-395.
15 王家全, 侯森磊, 林志南, 等. 半正弦循环交通动载下加筋砾性土动力特性研究[J]. 振动与冲击, 2022, 41(3): 90-98.
Wang Jia-quan, Hou Sen-lei, Lin Zhi-nan, et al. Dynamic characteristics of reinforced gravelly soil under semi-sinusoidal cyclic traffic dynamic load[J]. Journal of Vibration and Shock, 2022, 41(3): 90-98.
16 李丽华, 韩琦培, 李文涛, 等. 循环荷载作用下建筑垃圾土动力性能[J]. 长江科学院院报, 2022, 39(10): 97-102.
Li Li-hua, Han Qi-pei, Li Wen-tao, et al. Dynamic performance of construction waste soil under cyclic loading[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(10): 97-102.
17 . 土工试验规程 [S].
18 .公路工程集料试验规程 [S].
19 Li L, Qin L, Xiao H, et al. The triaxial test of construction and demolition (C&D) materials with different particle sizes and sand contents[J]. European Journal of Environmental and Civil Engineering,2023,27(9/10) :2800-2821.
20 鲁洋, 刘斯宏, 张勇敢, 等. 黏质土石混合体渗透特性试验及演化机制探讨[J]. 岩土力学, 2021, 42(6): 1540-1548.
Lu Yang, Liu Si-hong, Zhang Yong-gan, et al. Experimental study and mechanism analysis of permeability performance of clayey soil-rock mixtures[J]. Rock and Soil Mechanics, 2021, 42(6): 1540-1548.
21 Bathurst R, Karpurapu R. Large-scale triaxial compression testing of geocell-reinforced granular soils[J]. Geotechnical Testing Journal, 1993, 16(3):296-303.
22 黄玲, 徐晗, 饶锡保, 等. 砾质土钻孔灌砂工艺三轴试验效果研究[J]. 长江科学院院报, 2009, 26(12): 84-88.
Huang Ling, Xu Han, Rao Xi-bao, et al. Triaxial tests effect study on drilling and pumped sands of gravelly soil[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(12): 84-88.
23 Collins I F, Wang A P, Saunders L R. Shakedown theory and the design of unbound pavements[J]. Road and Transport Research, 1993, 2(4): 28-39.
24 Werkmeister S, Dawson A R, Wellner F. Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record,2001, 1757(1): 75-81.
25 Chen W B, Feng W Q, Yin J H, et al. Characterization of permanent axial strain of granular materials subjected to cyclic loading based on shakedown theory[J]. Construction and Building Materials, 2019, 198(20): 751-761.
26 李琼林, 青于蓝, 崔凯, 等. 长期循环荷载下土的动力学特性与本构模型研究进展[J]. 西南交通大学学报,2024(2): 377-391.
Li Qiong-lin, Yu-lan Qing, Cui Kai, et al. The review of soil dynamic behaviors and constitutive model under long-term cyclic loading[J]. Journal of Southwest Jiaotong University,2024(2): 377-391.
27 马少坤, 王博, 刘莹, 等. 南宁地铁区域饱和圆砾土大型动三轴试验研究[J]. 岩土工程学报, 2019, 41(1): 168-174.
Ma Shao-kun, Wang Bo, Liu Ying, et al. Large-scale dynamic triaxial tests on saturated gravel soil in Nanning metro area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 168-174.
28 Yang Z H, Yu Z R, Tai B W.Investigation of the deformation and strength properties of fouled graded macadam materials in heavy-haul railway subgrade beds[J].Construction and Building Materials,2021,273(31):No.121778.
29 谢定义. 土动力学[M]. 北京:高等教育出版社, 2011.
30 肖建清, 冯夏庭, 丁德馨, 等. 常幅循环荷载作用下岩石的滞后及阻尼效应研究[J]. 岩石力学与工程学报, 2010, 29(8): 1677-1683.
Xiao Jian-qing, Feng Xia-ting, Ding De-xin, et al. Study of hysteresis and damping effects of rock subjected to constant amplitude cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1677-1683.
31 常建梅, 李晓慧, 张伏光, 等. 基于大型动三轴试验和图形分析法的有砟道床劣化特性研究[J]. 铁道学报, 2022, 44(7): 107-116.
Chang Jian-mei, Li Xiao-hui, Zhang Fu-guang, et al. Degradation mechanism of railway ballast by large-scale cyclic triaxial test and image analysis method[J]. Journal of the China Railway Society, 2022, 44(7): 107-116.
[1] Li-hua LI,Zi-jian LI,Heng-lin XIAO,Wen-zhe CAO,Xin-long ZHOU,Shao-ping HUANG. Experiment on cyclic shear of geosynthetic reinforced construction waste soil [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1612-1623.
[2] Hua-fei HE,Zhao-ping LI,Rui-an FU,Shao-lin MA,Ming-li HUANG. Experiment on seismic performance of prefabricated sidewall joints considering strata restraint effect [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1601-1611.
[3] Fang-cheng LIU,Jiang WANG,Meng-tao WU,Guo-bin BU,Jie HE. Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2542-2553.
[4] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Guo-jin TAN. Temperature field and frost heaving analysis of prefabricated box culvert based on field monitoring [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2321-2331.
[5] Ying-xin HUI,Jia-wei CHEN. Squeezed branch pile groups optimization method based on improved genetic algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2089-2098.
[6] Ya-feng GONG,Shu-zheng WU,Hai-peng BI,Dong-ming ZHOU,Guo-jin TAN,Xiao-ming HUANG. Acoustic characterization of bond⁃slip process between basalt fiber reactive powder concrete and steel strand [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1819-1832.
[7] Shun LIU,Xiao-wei TANG,Yi-xiao LUAN. Influence of Rayleigh damping coefficient on seismic response of subway structure in liquefiable soil [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 159-169.
[8] Liang TANG,Pan SI,Jie CUI,Xian-zhang LING,Xiao-feng MAN. Pseudo-static analysis method of pile group earthquake response in liquefying mild inclined sloping ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 847-855.
[9] Ping JIANG,Lin ZHOU,Tian-hao MAO,Jun-ping YUAN,Wei WANG,Na LI. Damage model and time effect of cement⁃modified waste slurry [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2874-2882.
[10] Fei ZHANG,Yu-ming ZHU,Shang-chuan YANG,Shu-mao WANG. Emission mitigation analysis of geosynthetic⁃reinforced walls [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 631-637.
[11] Wen-bin TAO,Jun-ling HOU,Tie-lin CHEN,Bin TANG. Mechanical analysis of full⁃length anchorage with high pretension post⁃tensioning method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 631-640.
[12] Deng-hui GAO,Yi-chuan XING,Min-xia GUO,Ai-jun ZHANG,Xian-tao WANG,Bao-hong MA. Modified hyperbola model of interface between unsaturated remolded loess and concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 156-164.
[13] Peng-hui WANG,Hong-xia QIAO,Qiong FENG,Hui CAO,Shao-yong WEN. Durability model of magnesium oxychloride-coated reinforced concrete under the two coupling factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 191-201.
[14] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
[15] MAO Yu, ZUO Shu-guang, LIN Fu. Electromechanical coupled vibration characteristics of electric wheel under torque ripple [J]. 吉林大学学报(工学版), 2017, 47(3): 908-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!