Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2723-2732.doi: 10.13229/j.cnki.jdxbgxb.20221431

Previous Articles    

Flow field simulation and test of air delivery system for orchard multiduct sprayer

Xin YANG(),Yu-xiao LIU,Yang WANG,Chun-hao CHEN,Lin-shuo LYU   

  1. College of Mechanical and Electrical Engineering,Hebei Agricultural University,Baoding 071001,China
  • Received:2022-11-11 Online:2024-09-01 Published:2024-10-29

Abstract:

Design of orchard multi-duct sprayer air delivery system for the problems of uneven airflow distribution and poor droplet penetration of traditional ring-shaped air delivery sprayers. The optimal structural parameters were determined by simulation of the internal flow field consisting of the air duct, transition interface, flexible duct and air outlet, and the optimal parameters of the fan speed and total height of the air outlet were determined by external flow field simulation. According to the simulation results, the optimal combination of parameters was 170 mm duct width, 40° conversion interface angle, 123 mm flexible duct diameter, 52 mm outlet width, 2 160 r/min fan speed, and 1.9 m total height of the outlet. The air delivery system of the sprayer was set up according to the optimized parameters and designed for the airflow velocity test, and the results showed that the simulated values were in good agreement with the test values, and the error of airflow velocity on the left and right sides of the outlet was less than 10%. The droplet penetration was good, the deviation of droplet deposition density between canopies was less than 12%, and the droplets were evenly distributed in the vertical direction of the canopy.

Key words: agricultural mechanization engineering, orchard sprayer, air delivery system, flow field simulation, airflow velocity

CLC Number: 

  • S491

Fig.1

Structural diagram of air supply system"

Fig.2

CFD simulation results of air duct"

Table 1

CFD simulation data of air duct"

风道出口边长检测指标均值标准差
D1速度/(m·s-16.540.02
相对压力/Pa1067.341.97
D2速度/(m·s-16.670.03
相对压力/Pa324.123.73
D3速度/(m·s-17.090.89
相对压力/Pa702.969.72

Fig.3

Structural parameters of adapter and air outlet"

Fig.4

Influence of different structural parameters on airflow"

Table 2

Factor level"

水平试验因素
β/(°)Ф/mmL/mm
-13011040
04012050
15013060

Table 3

Significance and analysis of variance"

来源Y1Y2
FPFP
模型337.61<0.000 1224.660.000 2
A1 693.440.080 87.650.018 1
B913.28<0.000 1122.430.001 3
C211.630.000 41 342.380.001 2
AB12.020.004 750.490.368 6
AC5.97<0.000 1147.270.343 5
BC13.650.004 79.700.003 5
A230.62<0.000 186.28<0.000 1
B224.620.000 1236.130.005 1
C2134.510.156 429.760.000 7
失拟项1.910.073 62.230.133 7

Fig.5

Influence of interaction factors on response value"

Fig.6

Optimization simulation results"

Table 4

Outflow field simulation results"

参数h/mv/(m·s-1
R1R2R3R1R2R3
H123 45.782 410.472 473.6512.6213.7615.14
H22 712.632 852.453 082.647.588.499.24
H33 246.783 314.623 368.515.236.477.31

Fig.7

Comparison diagram of simulation results"

Fig.8

End velocity box diagram at different heights"

Fig.9

Benchmarking test process"

Fig.10

Comparison diagram of air velocity"

Fig.11

Field test process"

Fig.12

Comparison diagram of inner bore droplet deposition"

1 郑永军, 陈炳太, 吕昊暾, 等. 中国果园植保机械化技术与装备研究进展[J]. 农业工程学报, 2020, 36(20): 110-124.
Zheng Yong-jun, Chen Bing-tai, Lv Hao-tun, et al. Research progress of orchard plant protection mechanization technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 110-124.
2 Yue S, Heping Z, Hui L, et al. Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer[J]. Transactions of the ASABE, 2017, 60(6): 1827-1838.
3 王震涛, 牛浩, 唐玉荣, 等. 果园喷雾机械及技术的研究现状[J]. 塔里木大学学报, 2019, 31(3): 83-91.
Wang Zhen-tao, Niu Hao, Tang Yu-rong, et al. Research status of orchard spray machinery and technology [J]. Journal of Tarim University, 2019, 31(3): 83-91.
4 Kasner E J, Fenske R A, Hoheisel G A, et al. Spray drift from a conventional axial fan airblast sprayer in a modern orchard work environment[J]. Annals of Work Exposures and Health, 2018,62(9): 1134-1146.
5 王杰, 陶振洋, 茹煜, 等. 风机在农林植保机械中的应用研究现状及展望[J]. 中国农机化学报, 2016, 37(9): 67-74.
Wang Jie, Tao Zhen-yang, Ru Yu, et al. Research progress and outlook on application of fan in plant protection machinery of agriculture and forestry[J].Journal of Chinese Agricultural Mechanization, 2016, 37(9): 67-74.
6 Ade G, Molari G, Rondelli V. Recycling tunnel sprayer for poesticide dose adjustment to the crop environment[J]. Transactions of the ASABE, 2007, 50(2): 409-413.
7 Salcedo R, Ariane V, Granell R,et al. Eulerian-lagrangian model of the behaviour of droplets produced by an air-assisted sprayer in a citrus orchard[J]. Biosystems Engineering, 2017, 154: 76-91.
8 姜红花, 牛成强, 刘理民, 等. 果园多风管风送喷雾机风量调控系统设计与试验[J]. 农业机械学报, 2020, 51(): 298-307.
Jiang Hon-ghua, Niu Cheng-qiang, Liu Li-min, et al. Design and experiment of air volume control system of orchard multi-pipe air sprayer[J]. Journal of Luoyang Institute of Technology, 2020, 51(Sup.2): 298-307.
9 李建平, 边永亮, 霍鹏, 等.喷雾机风送式环形喷管喷雾装置设计与试验优化[J].农业机械学报, 2021, 52(9): 79-88.
Li Jian-ping, Bian Yong-liang, Huo Peng,et al. Design and experimental optimization of spray air supply annular nozzle spray device[J]. Journal of Agricultural Machinery, 2021,52 (9): 79-88.
10 Delele M A, De M A, Sonck B, et al.Modelling andvalidation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed[J]. Biosystems Engineering, 2005, 92(2): 165-174.
11 翟长远, 张燕妮, 窦汉杰, 等. 果园风送喷雾机出风口风场CFD建模与试验[J]. 智慧农业:中英文, 2021, 3(3): 70-81.
Zhai Chang-yuan, Zhang Yan-ni, Dou Han-jie, et al. CFD modeling and experiment of airflow at the air outlet of orchard air-assisted sprayer[J]. Smart Agriculture (English and Chinese), 2021, 3(3): 70-81.
12 Endalew A M, Debaerb C, Rutten N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying-Part I: model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(1): 128-136.
13 Duga A T, Delele M A, Rysen K, et al. Development and validation of a 3D CFD model of drift and its application to air-assisted orchard sprayers[J]. Biosystems Engineering, 2016, 154: 62-75.
14 宋淑然, 夏侯炳, 卢玉华, 等. 风送式喷雾机导流器结构优化及试验研究[J]. 农业工程学报, 2012, 28(6): 7-12.
Song Shu-ran, Xia Hou-bing, Lu Yu-hua, et al. Structural optimization and experiment on fluid director of air-assisted sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(6): 7-12.
15 徐奕蒙. 基于CFD技术的喷雾机风场研究与风送喷雾机控制系统研制[D]. 杨凌: 西北农林科技大学水利与建筑工程学院, 2019.
Xu Yi-meng. Research on wind farm of sprayer based on CFD technology and control system of air sprayer[D]. Yangling:College of Water Resources and Building Engineering, Northwest Agriculture and Forestry University, 2019.
16 臧帅. 果园喷雾机风送喷雾系统设计仿真与试验研究[D]. 镇江: 江苏大学农业工程学院, 2020.
Zang Shuai. Design, simulation and experimental study of an air-assisted spraying system of orchard sprayer[D]. Zhenjiang: College of Agricultural Engineering, Jiangsu University, 2020.
17 向浩, 兰兴欣, 于磊. 基于Solidworks软件的风扇自然风模拟仿真分析的研究[J]. 中国机械, 2014(17): No.218.
Xiang Hao, Lan Xing-xin, Yu Lei. Research on simulation analysis of natural wind simulation of fan based on Solidworks software[J]. China Machinery, 2014(17): No.218.
18 王平. 基于Flow Simulation 的直埋供热管道热损失模拟分析[J]. 区域供热, 2021, 210(1): 29-33, 43.
Wang Ping. Simulation of heat loss in direct buried heating pipes based on Flow Simulation[J]. District Heating, 2021, 210(1): 29-33, 43.
19 张燕妮. 果园喷药空间风场及风树交互作用CFD建模研究[D]. 杨凌: 西北农林科技大学机械与电子工程学院, 2021.
Zhang Yan-ni. CFD modeling research on orchard spatial airflow field and interaction between airflow and tree for orchard spraying[D]. Yangling: College of Mechanical and Electronic Engineering,Northwest Agriculture and Forestry University, 2021.
20 Wang H Q, Zou Z Y, Chen S Q, et al. Numerical simulation investigation on pressure loss of diffusion tank of axial main fan[J]. Journal of Coal Science & Engineering, 2011, 17(4): 447-449.
21 李建平, 边永亮, 杨欣, 等. 果园多风机风送喷雾机作业参数优化与试验[J]. 吉林大学学报: 工学版, 2022, 52(10): 2474-2485.
Li Jian-ping, Bian Yong-liang, Yang Xin,et al. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer [J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2474-2485.
22 戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护, 2008(6): 124-127.
Dai Fen-fen. Selection and calculation of the blowing rate of air-assisted sprayers [J]. Plant Protection, 2008(6): 124-127.
23 .风送式果园喷雾机作业质量 [S].
24 曹军琳, 祁力钧, 杨知伦, 等. 基于图像处理的雾滴沉积分布试验研究[J]. 中国农业大学学报, 2019, 24(1): 130-137.
Cao Jun-lin, Qi Li-jun, Yang Zhi-lun, et al. Experimental study of droplet distribution based on image processing[J]. Journal of China Agricultural University, 2019, 24(1): 130-137.
25 陈奕璇. 喷雾药液性质与农药沉积利用率关系研究[D]. 北京: 中国农业科学院植物保护研宄所, 2021.
Chen Yi-xuan. Study on the relationship between the properties of spray liquid and the utilization rate of pesticide[D]. Beijing: Institute of Plant Protection,Chinese Academy of Agricultural Sciences, 2021.
[1] Guo-qiang DUN,Xing-peng WU,Xin-xin JI,Fu-li ZHANG,Wen-yi JI,Li-gui ZHU. Design and experiment of corn strip swing tube fertilizer spreader [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2697-2707.
[2] Guo-zhong ZHANG,Kai-quan DING,Zheng-bo LI,Long CHEN,Nan-rui TANG,Wan-ru LIU,Hai-dong HUANG,Yong ZHOU,Hong-chang WANG. Design and experiment of biomimetic sliding plate for rice direct seeding machine based on loach body surface [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1482-1492.
[3] Fu ZHANG,Li-min LOU,Dan QIAN,Shi-qiang WANG,Chun-ling FENG,Yi-rong ZHAO. Optimum design and test of compression mechanism of big square baler [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1166-1174.
[4] Peng-fei ZHOU,Xue-geng CHEN,He-wei MENG,Rong-qing LIANG,Bing-cheng ZHANG,Za KAN. Design and experiment of trommel with function of separating soil from residual film mixture [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2718-2731.
[5] Wei-jian LIU,Xi-wen LUO,Shan ZENG,Zhi-qiang WEN,Li ZENG. Field turning mechanism and performance test of crawler reclaimed rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2695-2705.
[6] Mao-jian ZHANG,Jing-fu JIN,Yi-ying CHEN,Ting-kun CHEN. Vibration symmetry characteristics of wheeled tractor structure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2136-2142.
[7] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU,Wen-ming WANG. Design and experiment of bionic ear picking device for fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1231-1244.
[8] Guo-qiang DUN,Wen-hui LIU,Ning MAO,Xing-peng WU,Wen-yi JI,Hong-yan MA. Optimization design and experiment of alternate post changing seed metering device for soybean plot breeding [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 285-296.
[9] Shan ZENG,Deng-pan HUANG,Wen-wu YANG,Wei-jian LIU,Zhi-qiang WEN,Li ZENG. Design and test of the chassis of triangular crawler reclaiming rice harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1943-1950.
[10] Guo-liang WEI,Qing-song ZHANG,Biao WANG,Kun HE,Qing-xi LIAO. Analysis and experiment on parameters of plough body of rapeseed direct seeder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1709-1718.
[11] Jia-jie LIU,Lan MA,Wei XIANG,Bo YAN,Qing-hua WEN,Jiang-nan LYU. Design of 4QM⁃4.0 fibre crops green fodder combine harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 3039-3048.
[12] Bai-gong ZENG,Kui-liang LI,Jin YE,Li-li REN,Jaloliddin Rashidov,Ming ZHANG. Design and experiment of harvesting device for industrialized production line of Shanghaiqing [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2756-2764.
[13] Xing-yu WAN,Qing-xi LIAO,Ya-jun JIANG,Yi-yin SHAN,Yu ZHOU,Yi-tao LIAO. Discrete element simulation and experiment of mechanized harve- sting and chopping process for fodder rape crop harvest [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2735-2745.
[14] Guang-qiang ZHU,Tian-yu LI,Fu-jun ZHOU. Design and experiment of flexible clamping and conveying device for bionic ear picking of fresh corn [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2486-2500.
[15] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!