吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (4): 1344-1353.doi: 10.13229/j.cnki.jdxbgxb201604047

• Orginal Article • Previous Articles     Next Articles

Multi-direction swath imaging and two-dimensional digital beamforming based on space-born hybrid phased-MIMO SAR

ZHANG Le-le, CHEN Dian-ren, ZHAO Shuang   

  1. School of Electronics and Information Engineering, Changchun University of Science and Technology,Changchun 130022,China
  • Received:2015-07-06 Online:2016-07-20 Published:2016-07-20

Abstract: An imaging method of multi-direction swath based on space-born hybrid phased-MIMO SAR is proposed, which combines traditional phased-array radar with a new technique for multiple-input multiple-output (MIMO) radar, and the 2-D DBF for this system is presented to achieve unambiguous wide swath imaging with high azimuth resolution. Firstly, the signal model was built and the virtual control matrix of the Hybrid Phased-MIMO SAR was derived. Secondly, considering the image overlap and range ambiguity caused by multiple direction imaging, the adaptive Digital Beamforming (DBF) algorithm in range was proposed to separate the overlap area in images and to suppress the ambiguity. Finally, azimuth ambiguity that exceeds the signal bandwidth is suppressed by weighting in azimuth. Simulation results validate the effectiveness of this 2-D processing. Compared with space-born bi-direction SAR by two major lobes and multi-direction SAR by phased array, operation mode will be more flexible by using our method, and satisfy requests of multifunctional space-born SAR.

Key words: information processing, space-born phased-MIMO SAR, signal model, 2-D BDF, image overlap, image ambiguity

CLC Number: 

  • TN959.74
[1] Gebert N, Krieger G, Moreira A. Multichannel azimuth processing in ScanSAR and TOPS mode operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7):2994-3008.
[2] Gao Can-guan,Wang R,Deng Yun-kai, et al. Large-scene sliding spotlight SAR using multiple channels in azimuth[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1006-1010.
[3] Henke D, Magnard C, Frioud M, et al. Moving-target tracking in single-channel wide-beam SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11):4735-4747.
[4] Wollstadt S, Prats-Iraola P, Lopez-Dekker P, et al. Bidirectional SAR imaging mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):601-614.
[5] Ender J H G, Brenner A R. PAMIR—a wideband phased array SAR/MTI system[J]. IEE Proceedings Radar, Sonar and Navigation, 2003, 150(3):165-172.
[6] Wang Wen-qin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1615-1625.
[7] Kim J H, Younis M, Prats-Iraola P,et al. First spaceborne demonstration of digital beamforming for azimuth ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):1-11.
[8] Krieger G, Gebert N, Moreira A. Multidimensional waveform encoding: a new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):31-46.
[9] Feng Fan, Li Shi-qiang, Yu Wei-dong,et al. Study on the processing scheme for space-time waveform encoding SAR system based on two-dimensional digital beamforming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50 (3):910-932.
[10] Hassanien A, Vorobyov S A. Phased-MIMO radar: a tradeoff between phased-array and MIMO radars[J]. IEEE Transactions on Signal Processing, 2010, 58(6):1-33.
[11] Fuhrmann D R, Browning J P, Rangaswamy Muralidhar. Signaling strategies for the hybrid MIMO phased-array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(1):66-78.
[12] Hua G, Abeysekera S S. Receiver design for range and doppler sidelobe suppression using MIMO and phased-array radar[J]. IEEE Transactions on Signal Processing, 2013, 61(6):1315-1326.
[13] Wang Wen-qin, Shao Huai-zong. A flexible phased-MIMO array antenna with transmit beamforming[J]. International Journal of Antennas and Propagation, 2012, 10(6):473-475.
[14] Krieger G, Gebert N, Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4):260-264.
[15] Wang Wen-qin. High altitude platform multichannel SAR for wide-area and staring imaging[J]. IEEE A&E Systems Magazine, 2014, 29(5):12-17.
[16] 冯帆,李世强,禹卫东. 一种多维编码全极化SAR回波分离改进方法[J]. 电子与信息学报,2012,34(1):172-178.
Feng Fan, Li Shi-qiang, Yu Wei-dong. An improved approach to separating echoes in multidimensional waveform encoding fully-polarimetric SAR[J]. Journal of Electronics&Information Technology,2012,34(1):172-178.
[17] Kou Guang-jie, Wang Zhen-song, Yao Ping. Multiple beams spaceborne SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3363-3375.
[18] Tseng C Y, Griffiths L J. A unified approach to the design of linear constraints in minimum variance adaptive beamformers[J]. IEEE Transactions on Antennas and Propagation, 1992, 40(12):1533-1542.
[19] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4):397-401.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .