Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (11): 3289-3295.doi: 10.13229/j.cnki.jdxbgxb.20230889

Previous Articles    

Intelligent Recognition of sensitive small targets with fine grains in complex background remote sensing images

Fang-shi WANG(),Peng BAO   

  1. School of Software Engineering,Beijing Jiaotong University,Beijing 100044,China
  • Received:2023-08-22 Online:2024-11-01 Published:2025-04-24

Abstract:

In order to promote the development of computer vision technology and improve the utilization of remote sensing image information, the proposed method proposes fine-grained intelligent recognition of sensitive small targets in complex background remote sensing images. The proposed method first utilizes a median filtering algorithm to remove interference noise from the original remote sensing image. After graying out the image, a reasonable selection of background segmentation threshold is used to achieve the division of complex backgrounds and recognition targets in the remote sensing image, avoiding the impact of background information in the remote sensing image on the accuracy of subsequent target recognition. Input the processed remote sensing image into the CNN network, and use spatial selection method to refine and extract the main information features in the remote sensing image based on the output of the network convolutional layer feature map, obtaining fine-grained features of the remote sensing image for sensitive small target recognition; Construct an ELM small target recognition model based on the ELM classification mechanism to achieve fine-grained recognition of sensitive small targets in remote sensing images. Experiments have shown that the proposed method can achieve precise recognition of specific small targets in remote sensing images containing multiple categories of subjects, effectively improving the utilization efficiency of information in remote sensing images, and has significant significance for obtaining important intelligence.

Key words: median filtering algorithm, grayscale processing, cnn network, elm classification mechanism

CLC Number: 

  • TP751

Table 1

Clarity calculation results"

图像尺寸清晰度计算结果
本文方法文献[3]方法文献[4]方法
150×1202 2391 8622 035
230×1853 6411 9632 265
320×2305 3671 7625 630
400×2505 3674 3053 650
490×3236 4855 3944 065
530×3875 3694 9384 295
645×4756 5385 0364 935
760×5056 9725 5674 365

Fig.1

Identification of multicategory vegetation distribution"

Fig.2

Comparison of small target recognition results"

1 谢康, 陈晓斌, 尧俊凯, 等. 基于机器视觉的建筑垃圾填料物质组分图像分析方法[J]. 华南理工大学学报: 自然科学版, 2021, 49(10): 50-58.
Xie Kang, Chen Xiao-bin, Yao Jun-kai, et al. Image analysis method of construction waste filler material components based on machine vision[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(10): 50-58.
2 杨敏航, 陈龙, 刘慧, 等. 基于图卷积网络的多标签遥感图像分类[J]. 计算机应用研究, 2021, 38(11): 3439-3445.
Yang Min-hang, Chen Long, Liu Hui, et al. Multi-label remote sensing image classification based on graph convolutional network[J]. Application Research of Computers, 2021, 38(11): 3439-3445.
3 姜亚楠, 张欣, 张春雷, 等. 基于多尺度LBP特征融合的遥感图像分类[J]. 自然资源遥感, 2021, 33(3): 36-44.
Jiang Ya-nan, Zhang Xin, Zhang Chun-lei, et al. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
4 沈瑜, 王海龙, 苑玉彬, 等. 基于改进LinkNet的寒旱区遥感图像河流识别方法[J]. 农业机械学报, 2022, 53(7): 217-225.
Shen Yu, Wang Hai-long, Yuan Yu-bin, et al. Recognition of rivers in remote sensing images in cold and arid regions based on improved LinkNet[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(7): 217-225.
5 赵晓宇, 陈建军, 张凯琪, 等. 基于HSV色彩空间和Otsu算法的无人机影像植被覆盖度自动提取[J]. 科学技术与工程, 2021, 21(35): 15160-15166.
Zhao Xiao-yu, Chen Jian-jun, Zhang Kai-qi, et al. Automatic extraction of vegetation coverage from unmanned aerial vehicle images based on HSV and Otsu algorithm[J]. Science Technology and Engineering, 2021, 21(35): 15160-15166.
6 李皓, 翟月鹏, 杨小龙, 等. 基于层次分析-有序加权平均多准则评估的雄安新区生态安全格局模拟研究[J]. 生态学报, 2022, 42(1): 150-160.
Li Hao, Zhai Yue-peng, Yang Xiao-long, et al. Simulating ecological security patterns in the Xiong'an new area based on the multicriteria evaluation of AHP-OWA[J]. Acta Ecologica Sinica, 2022, 42(1): 150-160.
7 宋雨, 王亚林, 杜博军, 等. 基于改进最大类间方差法的靶板重孔检测[J]. 兵工学报, 2022, 43(4): 924-930.
Song Yu, Wang Ya-lin, Du Bo-jun, et al. Detection of overlapped bullet holes based on improved otsu's thresholding method[J]. Acta Armamentarii, 2022, 43(4): 924-930.
8 宋建辉, 王思宇, 刘砚菊, 等. 基于改进FFRCNN网络的无人机地面小目标检测算法[J]. 电光与控制, 2022, 29(7): 69-73.
Song Jian-hui, Wang Si-yu, Liu Yan-ju, et al. Ground small target detection algorithm of UAV based on improved FFRCNN network[J]. Electronics Optics & Control, 2022, 29(7): 69-73.
9 李经宇, 杨静, 孔斌, 等. 基于注意力机制的多尺度车辆行人检测算法[J]. 光学精密工程, 2021, 29(6): 1448-1458.
Li Jing-yu, Yang Jing, Kong Bin, et al. Multi-scale vehicle and pedestrian detection algorithm based on attention mechanism[J]. Optics and Precision Engineering, 2021, 29(6): 1448-1458.
10 毛伊敏, 张瑞朋, 高波. 大数据下基于特征图的深度卷积神经网络[J]. 计算机工程与应用, 2022, 58(15): 110-116.
Mao Yi-min, Zhang Rui-peng, Gao Bo. Deep convolutional neural network algorithm based on feature map in big data environment[J]. Computer Engineering and Applications, 2022, 58(15): 110-116.
11 孙学进, 李靖, 曹绍华, 等. 多尺度注意力聚合图卷积的高光谱分类[J]. 湖南科技大学学报: 自然科学版, 2022, 37(4): 94-103.
Sun Xue-jin, Li Jing, Cao Shao-hua, et al. Graph convolution with multi-scale attention aggregation for hyperspectral classification[J]. Journal of Hunan University of Science and Technology (Natural Science Edition), 2022, 37(4): 94-103.
12 李雪, 张琳玮, 姜涛, 等. 基于拉格朗日乘子的电力系统安全域边界通用搜索方法[J]. 中国电机工程学报, 2021, 41(15): 5139-5153.
Li Xue, Zhang Lin-wei, Jiang Tao, et al. General algorithm for exploring security region boundary in power systems using lagrange multiplier[J]. Proceedings of the CSEE, 2021, 41(15): 5139-5153.
[1] Jun YANG,Peng-fei HAN. Object detection of high-resolution remote sensing images by neural architecture search [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2646-2657.
[2] Yun-zuo ZHANG,Wei GUO,Wen-bo LI. Omnidirectional accurate detection algorithm for dense small objects in remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1105-1113.
[3] De-xing WANG,Kai GAO,Hong-chun YUAN,Yu-rui YANG,Yue WANG,Ling-dong KONG. Underwater image enhancement based on color correction and TransFormer detail sharpening [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 785-796.
[4] Chun-hua WANG,En-ze LI,Min XIAO. Object detection in high-resolution remote sensing images based on multi-feature fusion and twin attention network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 240-250.
[5] Li-bo CHENG,Xin-yue LI,Zhe LI,Xiao-ning JIA. Remote sensing image denoising method based on curvelet transform and goodness-of-fit test [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3207-3213.
[6] Zhi-dan CAI,Ming FANG,Zhe LI,Jia-lu XU. Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2649-2658.
[7] Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777.
[8] Ji-chang GUO,Jie WU,Chun-le GUO,Ming-hui ZHU. Image super-resolution reconstruction based on residual connection convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1726-1734.
[9] WANG Ke-yan, LI Yun-song, SONG Juan, LIAO Hui-lin, WU Xian-yun. Spatial-spectral lossless compression of hyperspectral images using local edge based prediction [J]. 吉林大学学报(工学版), 2017, 47(2): 677-685.
[10] ZHAO Bo, QIN Gui-he. High robustness image watermarking algorithm [J]. 吉林大学学报(工学版), 2017, 47(1): 249-254.
[11] JIANG Chao, GENG Ze-xun, LIU Li-yong, PAN Ying-feng. Maximum likelihood image restoration combined with image denoising [J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[12] LI Hui-hui, HUA Li, YANG Ning, LIU Kun. Multi-target association algorithm for remote sensing images based on MSA features and simulated annealing optimization [J]. 吉林大学学报(工学版), 2015, 45(4): 1353-1359.
[13] WANG Jing-meng, ZHANG Ai-wu, ZHAO Ning-ning, MENG Xian-gang. Influence of tilting angle on tilting sampling aliasing and relationship between aliasing and resolution [J]. 吉林大学学报(工学版), 2015, 45(3): 953-960.
[14] LIU Chun-xiang, GUO Yong-fei, LI Ning, XUE Xu-cheng, LYU Heng-yi. Real-time composing and compression of image within multi-channel spaceborne camera [J]. 吉林大学学报(工学版), 2013, 43(06): 1680-1684.
[15] FU Zhao-yang,GUO Lei,CHANG Wei-wei. Fusion algorithm of hyperspectral images based on wavelet transform and multichannel PCNN [J]. 吉林大学学报(工学版), 2011, 41(03): 838-843.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!