Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (11): 3575-3582.doi: 10.13229/j.cnki.jdxbgxb.202402147

Previous Articles    

Effect of extrusion temperature on the microstructure and mechanical properties of longitudinal weld in a porthole die extruded GNP/7075Al composite

Shu-mei LOU(),Le ZHOU,Peng CHEN,An-bo DU,Hao ZHAO,Yu MIAO   

  1. College of Intelligent Equipment,Shandong University of Science and Technology,Taian 271019,China
  • Received:2024-03-11 Online:2025-11-01 Published:2026-02-03

Abstract:

The effects of extrusion temperature on the microstructure and mechanical properties of longitudinal welds in aluminum matrix composites were investigated using graphene-reinforced 7075 aluminum matrix composites (GNP/7075Al) to enhance the welding quality during shunt die extrusion process.The results show that with the increase of extrusion temperature, the diffusion rate of metal atoms increases, the coarse second phases are obviously reduced, and more second phase particles are gradually dissolved into the aluminum matrix as well as the longitudinal weld. Appropriately increasing the extrusion temperature is conducive to forming a good welding interface and improving the quality of longitudinal weld. However, if the temperature is too high, the soft processes for the matrix such as dynamic recrystallization will decrease the deforming hardening of the extrusion, the weld pressure decrease, and the structure integrity of the graphene will be destroyed, decreasing the properties of the extrudate. At the extrusion temperature of 480℃, the welding line is the narrowest and the weld property is the best. Moderate dynamic recrystallization, solid solution strengthening of the matrix and the best state of the enhanced phase graphene brought the best weld quality and comprehensive mechanical properties of the extrudate with the tensile strength of 279.98 MPa.

Key words: composites, porthole die extrusion, extrusion temperature, microstructure, mechanical property

CLC Number: 

  • TG376.2

Fig.1

Schematic diagram of welding in the porthole die extrusion and sampling of tensile specimen"

Fig.2

Metallographic diagram of extrudate with different extrusion temperatures"

Fig.3

SEM images of the porthole die extrudate with different extrusion temperatures"

Fig.4

EDS diagram of the second phases of the extrudate"

Fig.5

XRD characterization of the extrudate according to different extrusion temperature"

Fig.6

Engineering stress-strain curves and tensile properties at different extrusion temperatures"

Fig.7

Microhardness distribution of products at different extrusion temperatures"

Fig. 8

Tensile fractographies of the extrudate accord- ing to different extrusion temperatures"

[1] Sachin R, Raj S R K, Ahmad K K L, et al. Effect of process parameters on mechanical properties of aluminum composite foam developed by friction stir processing[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,2021,235(12): 1892-1903.
[2] Mao Y, L J X, Anupam V, et al. High strengthimpact welding of 7075 Al to a SiC-reinforced aluminum metal matrix composite[J]. Materials Letters,2021,303:130549.
[3] 殷本珂. 含(Sr, Ba)TiO3铜基复合材料制备及热成型性能研究[D]. 哈尔滨: 哈尔滨工业大学深圳研究生院, 2015.
Yin Ben-ke. Research on the thermoformabilities of (Sr, Ba)TiO3 particle reinforced coppermatrix composites[D].Harbin: Shenzhen Graduate School,Harbin Institute of Technology, 2015.
[4] Yu J Q, Zhao G Q, Chen L. Analysis of longitudinal weld seam defects and investigation of solid-state bonding criteria in porthole die extrusion process of aluminum alloy profiles[J]. Journal of Materials Processing Technology, 2016, 237: 31-47.
[5] Xu X, Zhao G Q, Wang Y X, et al. Microstructural evolution and its effect on mechanical properties of spray deposited 2195 alloy during porthole die extrusion process[J]. Vacuum, 2019, 167:28-39.
[6] 姬浩. 7000系高强铝合金的发展及其在飞机上的应用[J]. 航空科学技术, 2015, 26(6): 75-78.
Ji Hao. Development and application of 7000high strength aluminum alloys on airplane[J].Aeronautical Science & Technology, 2015,26(6):75-78.
[7] 赵国群, 陈良, 喻俊荃. 铝合金制品分流模挤压过程焊合行为的研究进展[J]. 锻压技术, 2018, 43(7):49-55.
Zhao Guo-qun, Chen Liang, Yu Jun-quan. Research progress on welding behavior during porthole die extrusion process for aluminum alloy profile[J]. Forging Stamping Technology, 2018, 43(7): 49-55.
[8] 陈高进. 7075铝合金分流模挤压型材微观组织与力学性能研究[D]. 济南: 山东大学材料科学与工程学院, 2018.
Chen Gao-jin. Research on microstructure andmechanical property in porthole die extrusion of 7075 aluminum alloy[D].Jinan: College of Materials Science and Engineer-ing, Shandong University, 2018.
[9] Yu J Q, Zhao G Q. Interfacial structure and bonding mechanism of weld seams during porthole die extrusion of aluminum alloy profiles[J]. Materials Characterization, 2018, 4: 56-66.
[10] Liu Z W, Li L X, Yi J, et al. Influence ofextrusion speed on the seam weld quality in the porthole die extrusion of AZ31 magnesiumalloy tube[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1/4): 1039-1052.
[11] Zhou F J, Li F, Shi L S, et al. An optimizing processof profiled cross-sectional aluminum alloy porthole die extrusion using response surface methodology[J]. Modern Physics Letters B, 2016, 30(8): 1650098.
[12] 吴海峰, 李建超, 张学习, 等. 石墨烯/铝复合材料热挤压过程组织演变[J]. 材料热处理学报, 2018, 39(4): 14-19.
Wu Hai-feng, Li Jian-chao, Zhang Xue-xi, et al. Microstructural evolution of graphene/6061Al composites during hot extrusion[J]. Transactions of Materials and Heat Treatment, 2018, 39(4): 14-19.
[13] Cheng B J, Lou S M, Li Y M, et al. Effects of welding chamber height on properties of porthole die extrudates made of 0.5% GNPs/Al composite[J]. Vacuum, 2023, 214: 112184.
[14] Lou S M, Li Y M, Cheng B J . et al. Effects of extrusion temperature on the properties of a 0.5 wt% GNP/Al composite in portholedie extrusion [J]. Metals and Materials International, 2023, 29(12): 3607-3617.
[15] 娄淑梅, 李一明, 李鑫, 等. 基于BP神经网络和Arrhenius本构模型的GNP/7075Al复合材料热变形行为[J]. 吉林大学学报: 工学版, 2024, 54(5): 1237-1245.
Lou Shu-mei, Li Yi-ming, Li Xin, et al. Thermal deformation behavior of graphene nanosheets reinforced 7075 aluminum based on BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(5): 1237-1245.
[16] 李世康. 6063铝合金分流模挤压焊合组织及力学性能研究[D]. 长沙: 湖南大学机械与运载工程学院,2020.
Li Shi-kang. Study on the welding microstructure and mechanical property of 6063 aluminum alloy porthole die extrusion[D]. Changsha: College of Mechanical and Vehicle Engineering, Hunan University, 2020.
[17] Liu F, Sun L, Zhao G Q, et al. Microstructure and mechanical properties of longitudinal weld in 6005A aluminum alloy profile extruded by a porthole die[J]. Journal of Materials Research and Technology, 2024, 28: 2552-2571.
[18] Zhang Y L, Yang H F, Sun P, et al. Effect of aging time on precipitation of MgZn2 and microstructure and properties of 7075 aluminum alloy[J]. Journal of Materials Engineering and Performance,2024, 33: 6601-6611.
[19] Chen G J, Chen L, Zhao G Q, et al. Microstructure analysis of an Al-Zn-Mg alloy during porthole die extrusion based on modeling of constitutive equation and dynamic recrystallization[J]. Journal of Alloys and Compounds, 2017, 710: 80-91.
[20] 范相坤. 异种铝合金材料分流模挤压工艺与组织性能研究[D]. 济南: 山东大学材料科学与工程学院, 2018.
Fan Xiang-kun. Research on microstructure and mechanical property of dissimilar al alloys extruded by porthole die [D]. Jinan: College of Materials Science and Engineering, Shandong University, 2018.
[21] 赵然, 王莹, 赵增武, 等. 独居石负载Fe2O3矿物催化材料的NH3-SCR脱硝性能研究[J]. 稀有金属,2022, 46(7): 913-925.
Zhao Ran, Wang Ying, Zhao Zeng-wu, et al. NH3-SCR denitrification properties of monazite-supported Fe2O3 mineral catalytic materials[J]. Chinese Journal of Rare Metals, 2022, 46(7): 913-925.
[22] 徐潇. 铝锂合金分流挤压型材纵向焊缝固态焊合行为及其组织与性能研究[D]. 济南: 山东大学材料科学与工程学院, 2021.
Xu Xiao. Investigation on solid-state weldingbehavior, microstructure and properties of longitudinal weld in Al-Li alloy porthole die extrusion profiles[D].Jinan: College of Materials Science and Engineering, Shandong, University, 2021.
[23] 雷洋, 田文明. 放电等离子烧结制备石墨烯增强7075铝基复合材料的显微组织与力学性能[J]. 航空制造技术, 2019, 62(5): 74-79.
Lei Yang, Tian Wen-ming. Microstructure and mechanical properties of graphene-reinforced 7075 aluminum composites prepared by SPS[J]. Aeronautical Manufacturing Technology, 2019, 62(5): 74-79.
[24] 张树刚. TiB2/2024Al复合材料挤压型材组织与性能研究[D]. 济南: 山东大学材料科学与工程学院,2021.
Zhang Shu-gang. Research on microstructure and properties of extruded profile of TiB2/2024Al composite [D].Jinan: College of Materials Science and Engineer-ing, Shandong University, 2021.
[25] 李肖亮, 李昱桦, 董正学, 等. 碳/铝复合材料界面Al4C3相的形成与调控研究进展[J]. 中国有色金属学报, 2024, 34(5): 1453-1474.
Li Xiao-liang, Li Yu-hua, Dong Zheng-xue, et al. Reviews on formation and tailoring of interfacial Al4C3 phase in carbon/aluminum composites[J]. The Chinese Journal of Nonferrous Metals, 2024, 34(5): 1453-1474.
[26] Lou S M, Cheng B J, Li Y Q, et al. Influence of extrusion temperature on the microstructure and mechanical properties of a 0.5% graphene nanoplatelet-reinforced aluminum composite[J]. Journal of Materials Engineering and Performance. 2023, 32: 9344-9356.
[27] 徐仁杰. 不等厚方管铝型材横向/纵向焊缝及组织性能研究[D]. 济南: 山东大学材料科学与工程学院, 2022.
Xu Ren-jie. Study on charge/longitudinal weldsand microstructure properties of aluminum profiles of unequal thickness square tubes[D]. Jinan: College of Materials Science and Engineer-ing, Shandong University, 2022.
[28] Xu X, Ma X W, Zhao G Q, et al. Abnormal graingrowth of 2196 AI-Cu-Li alloyweld seams during extrusion and heat treatment[J]. Journal of Alloys and Compounds, 2021, 867: 159043.
[29] 李玉强. 7075铝合金挤压平模优化设计与型材组织性能研究[D]. 济南: 山东大学材料科学与工程学院, 2019.
Li Yu-qiang. Optimization design of 7075 aluminum alloy flat extrusion die and research on microstructure and mechanical propertyof extruded profiles[D]. Jinan: College of Materials Science and Engineer-ing, Shandong University, 2019.
[30] Shen Z K, Yang X Q, Yang S, et al. Microstructure and mechanical properties of friction spot welded 6061-T4 aluminum alloy[J]. Materials & Design (1980-2015), 2014, 54: 766-778.
[1] Hong-zhe ZHANG,Yu-xin JIA,Yong-jie BAO,Yu-xing YANG. Stiffness prediction model of thermoplastic composites-metal bonded-riveted hybrid joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2026, 56(1): 131-139.
[2] Wen-biao GONG,Zi-qi MIAO,Heng CUI,Xiu-ying WANG,Wei LIU. Evolution of thermal cycle, microstructures and mechanical properties of SA516Gr.70 steel prepared by friction stir welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2530-2538.
[3] Dao-you ZHENG,Yi-fan YANG,Yu-gang CHENG,Kui ZHAO,Kun WANG,Wen-quan WANG. Microstructures and mechanical properties of composite refined and modified ADC12 Al alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(8): 2570-2578.
[4] Fu-cheng WANG,Xin-rong ZHAO,Jia-bing TIAN,Guo-liang XIE,Li-ming ZHOU. Influence of rice straw ash on compressive properties and microstructure of concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2620-2630.
[5] Yi LI,Tian-bao LIU,Shao-qiang WANG,Ji-cai LIANG. Effect of soft carbon black on properties of natural rubber-based magnetorheological elastomers [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1548-1554.
[6] Shu-mei LOU,Yi-ming LI,Xin LI,Peng CHEN,Xue-feng BAI,Bao-jia CHENG. Thermal deformation behavior of graphene nanosheets reinforced 7075Al based on BP neural network and Arrhenius constitutive equation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1237-1245.
[7] Xiao-bo LIU,Miao YANG,De-kun ZHOU. Microstructure and wear resistance of (Mg2Si+Si)/Al composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 938-946.
[8] Jia-cheng FENG,Wen-biao GONG,Chuan JU,Yu-peng LI,Yu-meng SUN,Rui ZHU. Thermal cycle and microstructures characteristic of bobbin tool friction stir welded 2024 aluminum alloy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3184-3191.
[9] Ben-tian YU,Yan-xiao LI,Zhan-xu ZHANG,Jun-hui SU,Chao XIE,Kai ZHANG. Effect of different stone powder and content on properties of high ductility engineered cementitious composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2908-2921.
[10] Liang XU,Yu-bo BIAN,Song ZHOU,Jing-hou XIAO. Effect of high temperature immersion on properties of T800 carbon fiber/epoxy resin composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1943-1950.
[11] Gui-shen YU,Xin CHEN,Zi-tao WU,Yi-xiong CHEN,Guan-chen ZHANG. Analysis of microstructure and mechanical properties of probeless friction stir spot welding joint in AA6061⁃T6 aluminum thin plate [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1338-1344.
[12] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[13] Chao XIE,Qi-cai WANG,Ben-tian YU,Sheng LI,Xiao-xu LIN,Zhi-ming LU. Determination of elastic modulus by atomic force microscopy and microstructure analysis for polyurethane coating film [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1322-1330.
[14] Li-li WEI,Ming-yu HU. Meso numerical simulation of alkali aggregate reaction in mortar [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3501-3507.
[15] Kai-feng YU,Xiao-ling HE,Jun-tao LI,Ce LIANG. Toughening effect of short basalt fiber on unsaturated polyester resin composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2300-2306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!