Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (4): 938-946.doi: 10.13229/j.cnki.jdxbgxb.20220628

Previous Articles     Next Articles

Microstructure and wear resistance of (Mg2Si+Si)/Al composites

Xiao-bo LIU1(),Miao YANG2(),De-kun ZHOU1   

  1. 1.College of Mechanical Engineering,Beihua University,Jilin 132021,China
    2.Engineering Training Center,Beihua University,Jilin 132021,China
  • Received:2022-05-22 Online:2024-04-01 Published:2024-05-17
  • Contact: Miao YANG E-mail:stone-666@126.com;yangmiao1021@163.com

Abstract:

In-situ (Mg2Si+Si)/Al composites were prepared by using melting casting with different solidification rates. The microstructure and wear resistance of (Mg2Si+Si)/Al composites were investigated. The results show that, after P modification, the primary Mg2Si transformed to polygonal blocks, while the primary Si was mainly complex morphology. With increasing the solidification rate, the number of primary Mg2Si and primary Si particles increased and their particle sizes decreased. Extraction tests showed that the Mg2Si crystals had tetrahedral and hexahedral morphologies. Dry sliding wear behaviors of (Mg2Si+Si)/Al composites with different solidification rates against 45# steel, under conditions of different sliding speeds and loads, were investigated. The results show that, the wear resistance of (Mg2Si+Si)/Al composites increased with the increasing of the solidification rate. The wear mechanisms of (Mg2Si+Si)/Al composites are mainly adhesive wear and abrasive wear.

Key words: in-situ (Mg2Si+Si)/Al composites, microstructure, dry sliding wear, wear resistance

CLC Number: 

  • TB331

Fig.1

XRD pattern of(Mg2Si+Si)/Al composite withsolidification rate of V1"

Fig.2

Microstructures of (Mg2Si+Si)/Al composites"

Fig.3

Mg2Si particles morphologies extracted from(Mg2Si+Si)/Al composites"

Fig.4

Evolvement process of hexahedral Mg2Si particle"

Fig.5

Curves of (Mg2Si+Si)/Al composites betweenwear volumes and applied load with a slidingvelocity of 700 r/min"

Fig.6

SEM and EDS results of wear surfaces of (Mg2Si+Si)/Al composites with load of 50 N"

Fig.7

SEM of wear debris on (Mg2Si+Si)/Al composites"

Fig.8

Curves of (Mg2Si+Si)/Al composites between wear volume and sliding velocity"

Fig. 9

SEM and EDS results of the wear surfaces of (Mg2Si+Si)/Al composites with a sliding velocity of 1 000 r/min"

1 Seth P P, Parkash O, Kumar D. Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys-a review[J]. Royal Society of Chemistry, 2020, 10: 37327-37345.
2 Qin Q D, Li W X, Zhao K W, et al. Effect of modification and aging treatment on mechanical properties of Mg2Si/Al composite[J]. Materials Science and Engineering A, 2010, 527(9): 2253-2257.
3 Qin Q D, Zhao Y G, Zhou W. Dry sliding wear behavior of Mg2Si/Al composites against automobile friction material[J]. Wear, 2008, 264(7,8): 654-661.
4 周琦, 李延荣, 胡永辉, 等. 球磨时间对Mg2Si组织和 性能的影响[J]. 兰州理工大学学报, 2014, 40(4): 9-12.
Zhou Qi, Li Yan-Rong, Hu Yong-Hui, et al.Influence of ball milling time on microstructures and properties of Mg2Si[J]. Journal of Lanzhou University of Technology, 2014, 40(4): 9-12.
5 Song C J, Xu Z M, Liang G F, et al.Study of in situ Al/Mg2Si functional graded materials by electronmagnetic separation method[J]. Materials Science and Engineering A, 2006, 424(1-2): 6-16.
6 周琦, 李福祥, 南雪丽, 等. 自蔓延高温合成Al/Mg2Si 复合材料的淬熄试验[J]. 兰州理工大学学报, 2009,35(3): 1-3.
Zhou Qi, Li Fu-Xiang, Xue-Li Nan, et al. Quenching experiment of Al/Mg2Si composite synthesized with high-temperature self-propagation[J]. Journal of Lanzhou University of Technology, 2009, 35(3): 1-3.
7 Qin Q D, Zhao Y G. Nonfaceted growth of intermetallic Mg2Si in Al melt during rapid solidification[J]. Journal of Alloys and Compounds, 2008, 462(1-2): 28-31.
8 Zhai Y B, Ma X T, Mei Z. Centrifugal forming mechanism of Al gradient composites reinforced with complementary primary Si and Mg2Si particles[J]. Rare Metal Materials and Engineering, 2014, 43(4): 769-774.
9 刘政, 谢敏, 封志芳,等. 熔体过热处理对过共晶 Al-Si-Mg合金中Mg2Si相的影响[J]. 金属热处理, 2010, 35(10): 63-66.
Liu Zheng, Xie Min, Feng Zhi-Fang, et al.Influence of melt superheating on Mg2Si phase of hypereutectic Al-Si-Mg casting alloy[J]. Heat Treatment of Metals, 2010, 35(10): 63-66.
10 刘晓波, 周德坤, 赵宇光. 不同等温热处理条件下半固态挤压Mg2Si/Al复合材料的组织和性能[J]. 吉林大学学报:工学版, 2016, 46(5): 1577-1582.
Liu Xiao-Bo, Zhou De-Kun, Zhao Yu-Guang. Microstructure and mechanical property of Mg2Si/Al composites fabricated by semi-solid extrusion under different isothermal heat treatments[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5): 1577-1582.
11 任玉艳. 原位Mg2Si/Al复合材料强韧化及其机理的研究[D].沈阳: 沈阳工业大学材料科学与工程学院, 2012: 12-13.
Ren Yu-Yan. Study on strengthening and toughening mechanisms of in-situ Mg2Si/Al composite[D]. Shengyang: College of Material Science and Engineering,Shengyang University of Technology, 2012: 12-13.
12 Zhao Y G, Qin Q D, Zhao Y Q, et al.In situ Mg2Si/Al-Si composite modified by K2TiF6 [J]. Materials Letters, 2004, 58(16): 2192-2194.
13 Qin Q D, Zhao Y G, Zhou W, et al.Effect of phosphorus on microstructure and growth manner of primary Mg2Si crystal in Mg2Si/Al composite[J]. Materials Science and Engineering A, 2007, 447(1,2): 186-191.
14 Wu X F, Zhang G A, Wu F F. Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1532-1542.
15 Wu X F, Zhang G A, Wu F F. Microstructure and dry sliding wear behavior of cast Al-Mg2Si in-situ metal matrix composite modified by Nd[J]. Rare metals, 2013, 32(3): 284-289.
16 Tang S Q, Zhou J X, Tian C W, et al. Morphology modification of Mg2Si by Sr addition in Mg-4%Si alloy[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(9): 1932-1936.
17 Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg2Si in Mg-Si alloys with yttrium[J]. Materials Science and Engineering A, 2005, 392(1,2): 130-135.
18 林继兴. 复合变质对原位Mg2Si/Al-Si复合材料组织优 化研究[J]. 轻合金加工技术, 2008, 36(11): 11-14.
Lin Ji-Xing. Study on optimization of complex modification on microstructure in in-situ Mg2Si/Al-Si composite[J]. Light Alloy Fabrication Technology, 2008, 36(11): 11-14.
19 Zhang J, Fan Z, Wang Y Q, et al. Microstructural refinement in Al-Mg2Si in situ composites[J]. Journal of Materials Science Letters, 1999, 18(2): 783-784.
20 Liu X B, Yang M, Zhou D K, et al. Microstructure and wear resistance of Mg2Si-Al composites fabricated using semi-solid extrusion[J]. Metals, 2020,10(5): No.596.
21 Kobayashi K F, Hogan L M. The crystal growth of silicon in Al-Si alloys[J]. Jourmal of Materials Science, 1985, 20(6): 1961-1975.
22 周德坤, 刘晓波. 凝固速率对Mg2Si/Al复合材料组织和力学性能的影响[J]. 金属热处理, 2017, 42(10): 43-46.
Zhou De-Kun, Liu Xiao-Bo. Effect of solidification rate on microstructure and mechanical properties of Mg2Si/Al composites[J]. Heat Treatment of Metals, 2017, 42(10): 43-46.
23 Sekhar J A, Trivedi R. Solidification microstructure evolution in the presence of inert particles[J]. Materials Science and Engineering A, 1991, 147: 9-12.
24 陈磊. 变质Al-20wt.%Mg2Si合金中初生Mg2Si生长形貌演化与调控机制[D]. 长春:吉林大学材料科学与工程学院,2015: 48-53.
Chen Lei. The growth morphology evolution and regulation mechanism of primary Mg2Si in modified Al-20wt.%Mg2Si alloys[D]. Changchun: College of Material Science and Engineering, Jilin University, 2015: 48-53.
25 Wang R Y, Lu W H, Hogan L M. Faceted growth of silicon crystals in Al-Si alloys[J]. Metallurgical and materials transactions A, 1997, 28(5):1233-1250.
26 Hu Y, Rao L. Effect of particulate reinforcement on wear behavior of magnesium matrix composites[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(Sup.1): 2659-2664.
27 Somi Reddy A, Pramila Bai B N, Murthy K S S, et al. Wear and seizure of binary Al-Si alloys[J]. Wear, 1994, 171(1,2): 115-127.
28 Kwok J K M, Lim S C. High-speed tribological properties of some Al/SiCp composites: II. Wear Mechanisms[J]. Composites Science and Technology, 1999, 59: 65-75.
29 Sannino A P, Rack H J. Dry sliding wear of discontinuously reinforced aluminium composites: Review and discussion[J]. Wear, 1995, 189: 1-19.
30 Casellas D, Beltran A, Prado J M, et al. Microstructural effects on the dry wear resistance of powder metallurgy Al-Si alloys[J]. Materials Science and Engineering A, 2004, 257: 730-739.
[1] Di WU,Wen-hua GENG,Hong-mei LI,Da-qian SUN. Electron backscattered diffraction analysis on interface of aluminum/steel joints produced by plasma arc welding⁃brazing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1331-1337.
[2] Chao XIE,Qi-cai WANG,Ben-tian YU,Sheng LI,Xiao-xu LIN,Zhi-ming LU. Determination of elastic modulus by atomic force microscopy and microstructure analysis for polyurethane coating film [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1322-1330.
[3] Gui-shen YU,Xin CHEN,Zi-tao WU,Yi-xiong CHEN,Guan-chen ZHANG. Analysis of microstructure and mechanical properties of probeless friction stir spot welding joint in AA6061⁃T6 aluminum thin plate [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1338-1344.
[4] Shuan-cheng GU,Hong-bin NIE. Analysis of damage model of mortars strengthened with CFRP under ultimate freeze⁃thaw and load [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2108-2120.
[5] Zhi-jun LI,Hao LIU,Li-peng ZHANG,Zhen-guo LI,Yuan-kai SHAO,Zhi-yang LI. Simulation on influence of microstructure of the wall on deep bed filtration of particulate filter [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 422-434.
[6] Wen-biao GONG,Rui ZHU,Xin-zhe QIE,Heng CUI,Ming-yue GONG. Microstructure and properties of 6082 aluminum alloyultra⁃thick plate preparated by friction stir weld [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 512-519.
[7] Xin TONG,Ya-jiao ZHANG,Yu-shan HUANG,Zheng-zheng HU,Qing WANG,Zhi-hui ZHANG. Microstructure and mechanical properties of 304L stainless steel processed by selective laser melting [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1615-1621.
[8] Jin⁃zhong LU,Wan⁃ting ZHOU,Sheng⁃yang ZHANG,Yi⁃kai SHAO,Chang⁃yu WANG,Kai⁃yu LUO. Effect of coverage layer on corrosion resistance of 6061⁃T6 aluminum alloy subjected to laser shock peening [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 842-849.
[9] JIANG Qiu-yue,YANG Hai-feng,TAN Cai-wang. Strengthening properties of welded joints of 22MnB5 super high strength steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1806-1810.
[10] XI Peng,CONG Qian,WANG Qing-bo,GUO Hua-xi. Wear test and anti-friction mechanism analysis of bionic stripe grinding roll [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1787-1792.
[11] ZHENG Xiao-yi, SUN Da-qian, LI Xin, DU Gui-gang, XIN Wei-da, REN Zhen-an. Microstructure and properties of cladded Al-Nb layers reinforced by NbAl3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1531-1536.
[12] ZHAO Yu-guang, YANG Xue-hui, XU Xiao-feng, ZHANG Yang-yang, NING Yu-heng. Effects of Al-10Sr modifiers with different states, modification temperature and holding time on microstructure of ZL114A alloy [J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
[13] ZHANG Zhi-qiang, LIU Cong-hao, HE Dong-ye, LI Xiang-ji, LI Ji-xuan. Effect of hot stamping process of boron steel on shape precision based on performance gradient distribution [J]. 吉林大学学报(工学版), 2017, 47(6): 1829-1833.
[14] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[15] GUAN Qing-feng, LI Yan, HOU Xiu-li, YANG Sheng-zhi, WANG Xiao-tong. Modification of solid solution Mg-Gd-Y-Nd alloy irradiated by high current pulsed electron beam [J]. 吉林大学学报(工学版), 2015, 45(4): 1200-1205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!