1 |
CAI Y M, CHEN C, ZHAO M, et al. High prevalence of metallo-β-lactamase-producing enterobacter cloacae from three tertiary hospitals in China[J]. Front Microbiol, 2019, 10: 1610.
|
2 |
贾晓炯. 携带NDM-1基因阴沟肠杆菌的耐药传播机制及流行病学分析[D]. 重庆: 重庆医科大学, 2019.
|
3 |
DAVIN-REGLI A, LAVIGNE J P, PAGÈS J M. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance[J]. Clin Microbiol Rev, 2019, 32(4): e00002-e00019.
|
4 |
MUSTAFA A, IBRAHIM M, RASHEED M A,et al. Genome-wide analysis of four Enterobacter cloacae complex type strains: insights into virulence and Niche adaptation[J]. Sci Rep, 2020, 10(1): 8150.
|
5 |
BRUST F R, BOFF L, SILVA TRENTIN D D A,et al.Macrocolony of NDM-1 producing enterobacter hormaechei subsp. oharae generates subpopulations with different features regarding the response of antimicrobial agents and biofilm formation[J].Pathogens,2019,8(2): 49.
|
6 |
DAVIN-REGLI A, LAVIGNE J P, PAGÈS J M. Enterobacter spp.: update on taxonomy, clinical aspects, and emerging antimicrobial resistance[J]. Clin Microbiol Rev, 2019, 32(4): e00002-e00019.
|
7 |
AZEVEDO P A A, FURLAN J P R, OLIVEIRA-SILVA M, et al. Detection of virulence and β-lactamase encoding genes in Enterobacter aerogenes and Enterobacter cloacae clinical isolates from Brazil[J]. Braz J Microbiol, 2018, 49(): 224-228.
|
8 |
COSMO ANDRADE J, SILVA A R PDA, AUDILENE FREITAS M, et al. Control of bacterial and fungal biofilms by natural products of Ziziphus joazeiro Mart. (Rhamnaceae)[J]. Comp Immunol Microbiol Infect Dis, 2019, 65: 226-233.
|
9 |
FERRY A, PLAISANT F, GINEVRA C, et al. Enterobacter cloacae colonisation and infection in a neonatal intensive care unit: retrospective investigation of preventive measures implemented after a multiclonal outbreak[J]. BMC Infect Dis, 2020, 20(1): 682.
|
10 |
CHEN J J, TIAN S F, NIAN H, et al. Carbapenem-resistant Enterobacter cloacae complex in a tertiary Hospital in Northeast China, 2010-2019[J]. BMC Infect Dis, 2021, 21(1): 611.
|
11 |
JIN C M, ZHANG J G, WANG Q, et al. Molecular characterization of carbapenem-resistant Enterobacter cloacae in 11 Chinese cities[J]. Front Microbiol, 2018, 9: 1597.
|
12 |
WU W J, FENG Y, TANG G M, et al. NDM metallo-β-lactamases and their bacterial producers in health care settings[J]. Clin Microbiol Rev, 2019, 32(2): e00115-e00118.
|
13 |
LIU S X, FANG R C, ZHANG Y, et al. Characterization of resistance mechanisms of Enterobacter cloacae Complex co-resistant to carbapenem and colistin[J]. BMC Microbiol, 2021, 21(1): 208.
|
14 |
ZHAO Y X, ZHANG J S, FU Y J, et al. Molecular characterization of metallo-β-lactamase- producing carbapenem-resistant Enterobacter cloacae complex isolated in Heilongjiang Province of China[J]. BMC Infect Dis, 2020, 20(1): 94.
|
15 |
LIU S X, HUANG N, ZHOU C, et al. Molecular mechanisms and epidemiology of carbapenem-resistant Enterobacter cloacae complex isolated from Chinese patients during 2004-2018[J]. Infect Drug Resist, 2021, 14: 3647-3658.
|
16 |
宋顺佳, 金鑫莹, 姜菲菲, 等. 幽门螺杆菌对克拉霉素、甲硝唑和左氧氟沙星的耐药率及其相关耐药基因突变特征[J].吉林大学学报(医学版),2022,48(3):630-637.
|
17 |
余 艳, 牛 敏, 杜 艳, 等. 产NDM-1阴沟肠杆菌的耐药性与毒力基因分布[J]. 中国感染控制杂志, 2021, 20(10): 869-875.
|
18 |
HUANG C, LIU L Z, KONG H K, et al. A novel incompatibility group X3 plasmid carrying blaNDM-1 encodes a small RNA that regulates host fucose metabolism and biofilm formation[J]. RNA Biol, 2020, 17(12): 1767-1776.
|
19 |
LIU B M, SHUI L L, ZHOU K, et al. Impact of plasmid-encoded H-NS-like protein on blaNDM-1-bearing IncX3 plasmid in Escherichia coli [J]. J Infect Dis, 2020, 221(): S229-S236.
|
20 |
LEE H, SHIN J, CHUNG Y J, et al. Co-introduction of plasmids harbouring the carbapenemase genes, blaNDM-1 and blaOXA-232, increases fitness and virulence of bacterial host[J]. J Biomed Sci, 2020, 27(1): 8.
|
21 |
CUSUMANO J A, CAFFREY A R, DAFFINEE K E, et al. Weak biofilm formation among carbapenem-resistant Klebsiella pneumoniae [J]. Diagn Microbiol Infect Dis, 2019, 95(4): 114877.
|
22 |
余 艳. blaNDM-1阳性阴沟肠杆菌分子分型、耐药与毒力相关性研究[D].昆明:昆明医科大学,2021.
|
23 |
GÖTTIG S, RIEDEL-CHRIST S, SALEH A, et al. Impact of blaNDM-1 on fitness and pathogenicity of Escherichia coli and Klebsiella pneumoniae [J]. Int J Antimicrob Agents, 2016, 47(6): 430-435.
|