1 |
PANAY N, ANDERSON R A, NAPPI R E, et al. Premature ovarian insufficiency: an international menopause society white paper[J]. Climacteric, 2020, 23(5): 426-446.
|
2 |
COULAM C B, ADAMSON S C, ANNEGERS J F. Incidence of premature ovarian failure[J]. Obstet Gynecol, 1986, 67(4): 604-606.
|
3 |
胡玉萍, 孙小燕, 张学红. 早发性卵巢功能不全的遗传学病因研究进展[J]. 中华生殖与避孕杂志, 2022(2): 192-198.
|
4 |
MOYSÉS-OLIVEIRA M, GUILHERME R D O S S, DANTAS A G, et al. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations [J]. Fertil Steril, 2015, 103(5): 1289-1296.
|
5 |
DI-BATTISTA A, MOYSÉS-OLIVEIRA M, MELARAGNO M I. Genetics of premature ovarian insufficiency and the association with X-autosome translocations[J]. Reproduction, 2020, 160(4): R55-R64.
|
6 |
BAIRD D M, KIPLING D. The extent and significance of telomere loss with age[J]. Ann N Y Acad Sci, 2004, 1019: 265-268.
|
7 |
FATTET A J, TOUPANCE S, THORNTON S N, et al. Telomere length in granulosa cells and leukocytes: a potential marker of female fertility? a systematic review of the literature[J].J Ovarian Res,2020,13(1): 96.
|
8 |
NEVES A R, PAIS A S, FERREIRA S I, et al. Prevalence of cytogenetic abnormalities and FMR1 gene premutation in a portuguese population with premature ovarian insufficiency[J]. Acta Med Port, 2021, 34(9): 580-585.
|
9 |
CRISPONI L, DEIANA M, LOI A,et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome[J].Nat Genet, 2001, 27(2): 159-166.
|
10 |
JAILLARD S, SREENIVASAN R, BEAUMONT M, et al. Analysis of NR5A1 in 142 patients with premature ovarian insufficiency, diminished ovarian reserve, or unexplained infertility[J]. Maturitas, 2020, 131: 78-86.
|
11 |
XIE T, YE W T, LIU J, et al. The emerging key role of klotho in the hypothalamus-pituitary-ovarian axis[J]. Reprod Sci, 2021, 28(2): 322-331.
|
12 |
KOTTEMANN M C, SMOGORZEWSKA A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks[J]. Nature,2013, 493(7432): 356-363.
|
13 |
FOUQUET B, PAWLIKOWSKA P, CABURET S, et al. A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency[J]. Elife, 2017, 6:e30490.
|
14 |
HEDDAR A, DESSEN P, FLATTERS D, et al. Novel STAG3 mutations in a Caucasian family with primary ovarian insufficiency[J]. Mol Genet Genomics, 2019, 294(6): 1527-1534.
|
15 |
CHEN Z, CHEN H, YUAN K, et al. A 15q25.2 microdeletion phenotype for premature ovarian failure in a Chinese girl: a case report and review of literature[J]. BMC Med Genomics, 2020, 13(1): 126.
|
16 |
JIN H, AHN J, PARK Y, et al. Identification of potential causal variants for premature ovarian failure by whole exome sequencing[J]. BMC Med Genomics, 2020, 13(1): 159.
|
17 |
HAN M T, CHENG H B, WANG J X, et al. Abnormal aggregation of myeloid-derived suppressor cells in a mouse model of cyclophosphamide-induced premature ovarian failure[J]. Gynecol Endocrinol, 2019, 35(11): 985-900.
|
18 |
LIU X M, YAN M Q, JI S Y, et al. Loss of oocyte Rps26 in mice arrests oocyte growth and causes premature ovarian failure[J]. Cell Death Dis, 2018, 9(12): 1144.
|
19 |
CHOW R, WESSELS J M, FOSTER W G. Brain-derived neurotrophic factor (BDNF) expression and function in the mammalian reproductive tract[J]. Hum Reprod Update, 2020, 26(4): 545-564.
|
20 |
PARK J, PARK Y, KOH I, et al. Association of an APBA3 missense variant with risk of premature ovarian failure in the Korean female population[J]. J Pers Med, 2020, 10(4):193.
|
21 |
DING C Y, ZOU Q Y, DING J, et al. Increased N6-methyladenosine causes infertility is associated with FTO expression[J].J Cell Physiol, 2018, 233(9): 7055-7066.
|
22 |
NIE M Y, YU S, PENG S, et al. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5[J]. Biol Reprod, 2015, 93(4): 98.
|
23 |
DANG Y J, ZHAO S D, QIN Y Y, et al. MicroRNA-22-3p is down-regulated in the plasma of Han Chinese patients with premature ovarian failure[J]. Fertil Steril, 2015, 103(3): 802-807.e1.
|
24 |
HANNA C W, TAUDT A, HUANG J H, et al. MLL2 conveys transcription-independent H3K4 trimethylation in oocytes[J]. Nat Struct Mol Biol, 2018, 25(1): 73-82.
|
25 |
KIRSHENBAUM M, ORVIETO R. Premature ovarian insufficiency (POI) and autoimmunity-an update appraisal[J]. J Assist Reprod Genet, 2019, 36(11): 2207-2215.
|
26 |
YANG Z W, TANG Z J, CAO X P, et al. Controlling chronic low-grade inflammation to improve follicle development and survival[J]. Am J Reprod Immunol, 2020, 84(2): e13265.
|
27 |
CHAO C, BHATIA S, XU L F, et al. Chronic comorbidities among survivors of adolescent and young adult cancer [J]. J Clin Oncol, 2020, 38(27): 3161-3174.
|
28 |
NETTERLID A, MÖRSE H, GIWERCMAN A,et al. Premature ovarian failure after childhood cancer and risk of metabolic syndrome: a cross-sectional analysis[J]. Eur J Endocrinol, 2021, 185(1): 67-75.
|
29 |
WALLACE W H B, THOMSON A B, KELSEY T W. The radiosensitivity of the human oocyte[J]. Hum Reprod, 2003, 18(1): 117-121.
|
30 |
鞠宏姝. 中青年女性患者子宫切除术后卵巢早衰的影响因素分析[J]. 中国妇幼保健, 2021, 36(8):1812-1814.
|
31 |
CAO M F, PAN W Y, SHEN X Y, et al. Urinary levels of phthalate metabolites in women associated with risk of premature ovarian failure and reproductive hormones[J]. Chemosphere, 2020, 242: 125206.
|
32 |
MENEZO Y, DALE B, ELDER K. The negative impact of the environment on methylation/epigenetic marking in gametes and embryos: a plea for action to protect the fertility of future generations[J]. Mol Reprod Dev, 2019, 86(10): 1273-1282.
|
33 |
THAKUR M, FELDMAN G, PUSCHECK E E. Primary ovarian insufficiency in classic galactosemia: current understanding and future research opportunities[J]. J Assist Reprod Genet, 2018, 35(1): 3-16.
|
34 |
CHEN H, CHENG R, XU L Z. Correlation between dietary nutrition and premature ovarian failure[J]. J Sichuan Univ Med Sci Ed, 2017, 48(4): 575-578.
|
35 |
LAMBRINOUDAKI I, PASCHOU S A, LUMSDEN M A, et al. Premature ovarian insufficiency: a toolkit for the primary care physician[J]. Climacteric,2021,24(5): 425-437.
|
36 |
GONG L, JI H H, TANG X W, et al. Human papillomavirus vaccine-associated premature ovarian insufficiency and related adverse events: data mining of Vaccine Adverse Event Reporting System[J]. Sci Rep, 2020, 10(1): 10762.
|
37 |
朱轶轩, 董晓英. 基于氧感知通路探讨早发性卵巢功能不全发生机制的研究进展 [J]. 中国医药导报, 2021, 18(22): 55-58.
|
38 |
ZHAO W, DONG L W. Long non-coding RNA HOTAIR overexpression improves premature ovarian failure by upregulating Notch-1 expression[J]. Exp Ther Med, 2018, 16(6): 4791-4795.
|
39 |
LI M C, PENG J T, ZENG Z. Overexpression of long non-coding RNA nuclear enriched abundant transcript 1 inhibits the expression of p53 and improves premature ovarian failure [J]. Exp Ther Med, 2020, 20(5): 1.
|
40 |
YIN N, WU C T, QIU J P, et al. Protective properties of heme oxygenase-1 expressed in umbilical cord mesenchymal stem cells help restore the ovarian function of premature ovarian failure mice through activating the JNK/Bcl-2 signal pathway-regulated autophagy and upregulating the circulating of CD8+CD28-T cells[J]. Stem Cell Res Ther, 2020, 11(1): 49.
|
41 |
LIU L L, WANG H S, XU G L, et al. Tet1 deficiency leads to premature ovarian failure[J]. Front Cell Dev Biol, 2021, 9: 644135.
|
42 |
孙晓峰, 刘 涛, 曾贵荣,等. 左归丸对磷酰胺氮芥体外诱导损伤颗粒细胞自噬与凋亡的影响[J]. 中国比较医学杂志, 2021, 31(1): 22-26.
|
43 |
MDAMIN N A, SHEIKH ABDUL KADIR S H, ARSHAD A H, et al. Are vitamin E supplementation beneficial for female gynaecology health and diseases?[J].Molecules, 2022, 27(6):1896.
|
44 |
MICHELS A W, GOTTLIEB P A. Autoimmune polyglandular syndromes[J]. Nat Rev Endocrinol, 2010, 6(5): 270-277.
|
45 |
CHEN C, LI S, HU C, et al. Protective effects of puerarin on premature ovarian failure via regulation of Wnt/β-catenin signaling pathway and oxidative stress[J]. Reprod Sci, 2021, 28(4): 982-990.
|
46 |
CHEN Z G, KANG X J, WANG L P, et al. Rictor/mTORC2 pathway in oocytes regulates folliculogenesis, and its inactivation causes premature ovarian failure[J]. J Biol Chem, 2015, 290(10): 6387-6396.
|
47 |
PARGIANAS M, SALTA S, APOSTOLOPOULOU K,et al. Pathways involved in premature ovarian failure: a systematic review of experimental studies[J]. Curr Pharm Des, 2020, 26(18): 2087-2095.
|
48 |
ZIMMERMANN R C, HARTMAN T, KAVIC S, et al. Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development[J]. J Clin Invest, 2003, 112(5): 659-669.
|
49 |
YANG Z L, DU X, WANG C L, et al. Therapeutic effects of human umbilical cord mesenchymal stem cell-derived microvesicles on premature ovarian insufficiency in mice[J].Stem Cell Res Ther, 2019, 10(1): 250.
|
50 |
ZHOU S, ZHAO D, LIU S Q, et al. TGF-β1 sustains germ cell cyst reservoir via restraining follicle formation in the chicken[J]. Cell Biol Int, 2020, 44(3): 861-872.
|
51 |
付慧兰, 刘慧萍, 黄姗姗,等. Wnt信号通路在卵巢早衰发病机制中作用的研究进展[J]. 湖南中医杂志, 2019, 35(5): 183-185.
|
52 |
LUO M, ZHOU L, ZHAN S J, et al. ALPL regulates the aggressive potential of high grade serous ovarian cancer cells via a non-canonical WNT pathway[J]. Biochem Biophys Res Commun,2019,513(2): 528-533.
|
53 |
EL-DERANY M O, SAID R S, EL-DEMERDASH E. Bone marrow-derived mesenchymal stem cells reverse radiotherapy-induced premature ovarian failure: emphasis on signal integration of TGF-β, Wnt/β-catenin and hippo pathways[J].Stem Cell Rev Rep,2021,17(4): 1429-1445.
|