吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2640-2648.doi: 10.13229/j.cnki.jdxbgxb.20200365

• 计算机科学与技术 • 上一篇    下一篇

基于NSST域像素相关分析的医学图像融合

肖明尧1,2(),李雄飞2,朱芮2   

  1. 1.长春师范大学 计算机科学与技术学院,长春 130032
    2.吉林大学 计算机科学与技术学院,长春 130012
  • 收稿日期:2020-05-24 出版日期:2023-09-01 发布日期:2023-10-09
  • 作者简介:肖明尧(1980-),男,讲师,博士.研究方向:数据挖掘与图像处理.E-mail:fengyuanqing@tom.com
  • 基金资助:
    国家自然科学基金项目(61801190);吉林省自然科学基金项目(20180101055JC);国家博士后科研基金项目(2017M611323);吉林省教育厅科学研究项目(JJKH20230920KJ)

Medical image fusion based on pixel correlation analysis in NSST domain

Ming-yao XIAO1,2(),Xiong-fei LI2,Rui ZHU2   

  1. 1.College of Computer Science and Technology,Changchun Normal University,Changchun 130032,China
    2.College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2020-05-24 Online:2023-09-01 Published:2023-10-09

摘要:

针对像素级多模态医学图像融合信息丢失的问题,提出了一种基于非下采样剪切波变换(NSST)的像素相关性分析(PCAS)的图像融合方法。首先,对源图像进行NSST分解,获得高低频子带。然后,利用提出的中心像素方差计算邻域像素与中心像素的强度相关因子,构建邻域像素相关系数矩阵,并提出将相关性拉普拉斯能量和作为高频方向子带的融合规则。再次,计算低频子带中心像素能量以及邻域像素能量梯度信息,得到低频融合决策图。最后,通过逆变换得到融合结果图像。磁共振图像(MRI)和计算机断层扫描(CT)、单光子发射计算机断层成像(PET)、正电子发射断层成像(SPECT)的脑部图像融合实验结果表明,本文融合方法可以很好地保留源图像的显著信息和纹理细节。

关键词: 计算机应用, 图像处理, 图像融合, 非下采样剪切波变换, 像素相关性

Abstract:

To solve the problem of information loss in pixel-level multimodal medical image fusion, an image fusion method using pixel correlation analysis (PCA) in Non-subsampled Shearlet Transform (NSST) domain is proposed. First, NSST decomposition is performed on the source images to obtain high and low frequency sub-bands. The intensity correlation factor between neighborhood pixels and central pixel is calculated using the proposed center pixel variance, and the correlation coefficient matrix of neighborhood pixels is constructed. The proposed correlation-sum of modified laplacian (C-SML) is used as the fusion rule for high-frequency sub-bands. The energy of the central pixel and the energy gradient information of the neighboring pixels of the low-frequency sub-bands are calculated to obtain the fusion decision map for low-frequency sub-bands. Finally, the fused image is obtained by inverse NSST. The experimental results about magnetic resonance imaging (MRI) and computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) brain images indicate that the proposed fusion method can well retain the significant information and texture details of the source images.

Key words: computer application, image processing, image fusion, non-subsampled shearlet transform(NSST), pixel correlation

中图分类号: 

  • TP391

图1

NSST分解图像示意图(2级)"

图2

NSST分解脑CT图像的8个方向子带"

图3

基于像素相关分析的医学图像融合框架"

图4

中心像素与邻域像素空间关系示意图"

图5

第一组MRI-CT图像的融合结果"

图6

第二组MRI-CT图像的融合结果"

表1

第一组融合图像的客观评价结果"

方法ENQ0QEQWSSIMVIFF
CBF4.50890.37390.68880.54370.44340.2796
CSMCA4.59770.41720.77050.74350.58850.4263
CVT4.43250.24850.40740.43010.27460.3645
DWT4.33060.27170.47350.46100.29280.3606
GFF4.65250.37500.70720.56030.56000.2483
MSTSR4.53210.41380.74790.70030.58510.3650
NSCT4.36890.25490.44600.44230.28590.3676
NSCT_LLE4.81740.42570.73160.76870.67020.4455
NSST_PCNN4.89980.39320.56470.58530.63840.3884
本文4.83150.42790.78950.79510.69780.4457

表2

第二组融合图像的客观评价结果"

方法ENQ0QEQWSSIMVIFF
CBF4.10890.31920.74280.57060.49620.3733
CSMCA3.92290.35660.84410.77570.70120.5107
CVT4.11800.25600.44910.46450.37400.4271
DWT4.02140.27260.52750.49550.38940.4253
GFF4.27330.32610.83990.76110.72140.4718
MSTSR4.01680.34220.84650.77780.75070.5187
NSCT4.04160.25930.49510.47630.38250.4309
NSCT_LLE4.31680.38590.75530.79310.85480.5657
NSST_PCNN4.75900.35100.53950.56310.79580.4584
本文4.39830.38930.85720.82040.90350.5711

图7

MRI图像与SPECT图像的融合结果"

图8

MRI图像与PET图像的融合结果"

表3

MRI-SPECT融合图像的客观评价结果"

方法ENQ0QEQWSSIMVIFF
CBF4.44070.44000.75800.72180.74590.4807
CSMCA4.14500.38640.74000.70850.72050.4939
CVT4.27600.26680.47710.51360.45040.3620
DWT4.16540.30030.53210.53520.46670.3735
GFF4.52990.45190.78820.72030.71750.4832
MSTSR4.47790.37910.73740.73170.78840.5112
NSCT4.20830.27940.51160.52400.45980.3710
NSCT_LLE4.58890.45760.77580.76220.80720.5402
NSST_PCNN4.55030.44970.76600.74450.79380.5424
本文4.62130.45800.77950.76240.81370.5442

表4

MRI-PET融合图像的客观评价结果"

方法ENQ0QEQWSSIMVIFF
CBF2.92440.24790.83780.76960.87270.5064
CSMCA2.82410.24000.82960.76850.83940.5060
CVT3.25070.23820.81820.75970.81730.5197
DWT2.98950.21920.58640.59140.43780.4527
GFF3.14060.24110.86840.76420.72070.4551
MSTSR3.19210.24850.83150.77480.72670.5396
NSCT3.02860.20960.56820.57750.42790.4577
NSCT_LLE3.20260.25560.83550.78910.91100.5600
NSST_PCNN3.25430.25120.83750.79830.91630.5595
本文3.26740.26130.83460.78110.91760.5601
1 Yang Y. Multimodal medical image fusion through a new DWT based technique[C]∥2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 2010: 1-4.
2 Srivastava R, Prakash O, Khare A. Local energy-based multimodal medical image fusion in curvelet domain[J]. IET Comput Vision, 2016, 10(6): 513-527.
3 Koley S, Galande A, Kelkar B, et al. Multispectral MRI image fusion for enhanced visualization of meningioma brain tumors and edema using contourlet transform and fuzzy statistics[J]. Journal of Medical and Biological Engineering, 2016, 36(4): 470-484.
4 Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.
5 高印寒, 陈广秋, 刘妍妍. 基于图像质量评价参数的非下采样剪切波域自适应图像融合[J]. 吉林大学学报:工学版, 2014, 44(1): 225-234.
Gao Yin-han, Chen Guang-qiu, Liu Yan-yan. Adaptive image fusion based on image quality assessment parameter in NSST system[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1): 225-234.
6 Vishwakarma A, Bhuyan M K. Image fusion using adjustable non-subsampled shearlet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(9): 3367-3378.
7 Zhu Y L, Zhou X Y, Li X W, et al. Algorithm of medical image fusion based on Laplasse pyramid and PCA[C]∥IOP Conference Series: Materials Science and Engineering, Shanghai, China, 2019: 490(4): No.042030.
8 Devi M S, Balamurugan P. Local energy match based non-sub sampled contourlet Transform for multi modal medical image fusion[J]. International Journal of Engineering and Technology, 2018, 7(2): 165-169.
9 刘哲, 徐涛, 宋余庆,等. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报:工学版, 2018,48(5): 1614-1620.
Liu Zhe, Xu Tao, Song Yu-qing, et al. Image fusion technology based on NSCT transform and robust principal component analysis model of similarity information[J]. Journal of Jilin University (Engineering and Technology Edition), 2018,48(5):1614-1620.
10 Yin Ming, Liu Xiao-ning, Liu Yu, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(1): 49-64.
11 Kumar B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204.
12 Liu Y, Chen X, Ward R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489.
13 Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156.
14 Li S, Kang X, Hu J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875.
15 Liu Yu, Liu Shu-ping, Wang Zeng-fu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164.
16 Zhu Zhi-qin, Zheng Ming-yao, Qi Guan-qiu, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824.
[1] 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600.
[2] 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639.
[3] 张云佐,董旭,蔡昭权. 拟合下肢几何特征的多视角步态周期检测[J]. 吉林大学学报(工学版), 2023, 53(9): 2611-2619.
[4] 赵亚慧,李飞雨,崔荣一,金国哲,张振国,李德,金小峰. 基于跨语言预训练模型的朝汉翻译质量评估[J]. 吉林大学学报(工学版), 2023, 53(8): 2371-2379.
[5] 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429.
[6] 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387.
[7] 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108.
[8] 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304.
[9] 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457.
[10] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[11] 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154.
[12] 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162.
[13] 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642.
[14] 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922.
[15] 吴振宇,刘小飞,王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报(工学版), 2023, 53(3): 781-791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] 张和生,张毅,温慧敏,胡东成 . 利用GPS数据估计路段的平均行程时间[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .