吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (9): 2640-2648.doi: 10.13229/j.cnki.jdxbgxb.20200365
Ming-yao XIAO1,2(),Xiong-fei LI2,Rui ZHU2
摘要:
针对像素级多模态医学图像融合信息丢失的问题,提出了一种基于非下采样剪切波变换(NSST)的像素相关性分析(PCAS)的图像融合方法。首先,对源图像进行NSST分解,获得高低频子带。然后,利用提出的中心像素方差计算邻域像素与中心像素的强度相关因子,构建邻域像素相关系数矩阵,并提出将相关性拉普拉斯能量和作为高频方向子带的融合规则。再次,计算低频子带中心像素能量以及邻域像素能量梯度信息,得到低频融合决策图。最后,通过逆变换得到融合结果图像。磁共振图像(MRI)和计算机断层扫描(CT)、单光子发射计算机断层成像(PET)、正电子发射断层成像(SPECT)的脑部图像融合实验结果表明,本文融合方法可以很好地保留源图像的显著信息和纹理细节。
中图分类号:
1 | Yang Y. Multimodal medical image fusion through a new DWT based technique[C]∥2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 2010: 1-4. |
2 | Srivastava R, Prakash O, Khare A. Local energy-based multimodal medical image fusion in curvelet domain[J]. IET Comput Vision, 2016, 10(6): 513-527. |
3 | Koley S, Galande A, Kelkar B, et al. Multispectral MRI image fusion for enhanced visualization of meningioma brain tumors and edema using contourlet transform and fuzzy statistics[J]. Journal of Medical and Biological Engineering, 2016, 36(4): 470-484. |
4 | Easley G, Labate D, Lim W Q. Sparse directional image representations using the discrete shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46. |
5 | 高印寒, 陈广秋, 刘妍妍. 基于图像质量评价参数的非下采样剪切波域自适应图像融合[J]. 吉林大学学报:工学版, 2014, 44(1): 225-234. |
Gao Yin-han, Chen Guang-qiu, Liu Yan-yan. Adaptive image fusion based on image quality assessment parameter in NSST system[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1): 225-234. | |
6 | Vishwakarma A, Bhuyan M K. Image fusion using adjustable non-subsampled shearlet transform[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(9): 3367-3378. |
7 | Zhu Y L, Zhou X Y, Li X W, et al. Algorithm of medical image fusion based on Laplasse pyramid and PCA[C]∥IOP Conference Series: Materials Science and Engineering, Shanghai, China, 2019: 490(4): No.042030. |
8 | Devi M S, Balamurugan P. Local energy match based non-sub sampled contourlet Transform for multi modal medical image fusion[J]. International Journal of Engineering and Technology, 2018, 7(2): 165-169. |
9 | 刘哲, 徐涛, 宋余庆,等. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报:工学版, 2018,48(5): 1614-1620. |
Liu Zhe, Xu Tao, Song Yu-qing, et al. Image fusion technology based on NSCT transform and robust principal component analysis model of similarity information[J]. Journal of Jilin University (Engineering and Technology Edition), 2018,48(5):1614-1620. | |
10 | Yin Ming, Liu Xiao-ning, Liu Yu, et al. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 68(1): 49-64. |
11 | Kumar B K S. Image fusion based on pixel significance using cross bilateral filter[J]. Signal, Image and Video Processing, 2015, 9(5): 1193-1204. |
12 | Liu Y, Chen X, Ward R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489. |
13 | Nencini F, Garzelli A, Baronti S, et al. Remote sensing image fusion using the curvelet transform[J]. Information Fusion, 2007, 8(2): 143-156. |
14 | Li S, Kang X, Hu J. Image fusion with guided filtering[J]. IEEE Transactions on Image Processing, 2013, 22(7): 2864-2875. |
15 | Liu Yu, Liu Shu-ping, Wang Zeng-fu. A general framework for image fusion based on multi-scale transform and sparse representation[J]. Information Fusion, 2015, 24: 147-164. |
16 | Zhu Zhi-qin, Zheng Ming-yao, Qi Guan-qiu, et al. A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain[J]. IEEE Access, 2019, 7: 20811-20824. |
[1] | 霍光,林大为,刘元宁,朱晓冬,袁梦,盖迪. 基于多尺度特征和注意力机制的轻量级虹膜分割模型[J]. 吉林大学学报(工学版), 2023, 53(9): 2591-2600. |
[2] | 何颖,王卓然,周旭,刘衍珩. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639. |
[3] | 张云佐,董旭,蔡昭权. 拟合下肢几何特征的多视角步态周期检测[J]. 吉林大学学报(工学版), 2023, 53(9): 2611-2619. |
[4] | 赵亚慧,李飞雨,崔荣一,金国哲,张振国,李德,金小峰. 基于跨语言预训练模型的朝汉翻译质量评估[J]. 吉林大学学报(工学版), 2023, 53(8): 2371-2379. |
[5] | 金小俊,孙艳霞,于佳琳,陈勇. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429. |
[6] | 车翔玖,徐欢,潘明阳,刘全乐. 生物医学命名实体识别的两阶段学习算法[J]. 吉林大学学报(工学版), 2023, 53(8): 2380-2387. |
[7] | 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108. |
[8] | 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304. |
[9] | 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457. |
[10] | 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426. |
[11] | 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154. |
[12] | 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162. |
[13] | 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642. |
[14] | 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922. |
[15] | 吴振宇,刘小飞,王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报(工学版), 2023, 53(3): 781-791. |
|