吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2371-2379.doi: 10.13229/j.cnki.jdxbgxb.20220005

• 计算机科学与技术 • 上一篇    

基于跨语言预训练模型的朝汉翻译质量评估

赵亚慧(),李飞雨,崔荣一,金国哲,张振国,李德,金小峰   

  1. 延边大学 计算机科学与技术学院,吉林 延吉 133002
  • 收稿日期:2022-01-04 出版日期:2023-08-01 发布日期:2023-08-21
  • 作者简介:赵亚慧(1974-),女,教授,硕士.研究方向:自然语言处理.E-mail:yhzhao@ybu.edu.cn
  • 基金资助:
    国家社会科学基金重大项目(22&ZD305);国家自然科学基金项目(62062064);国家语委“十三五”科研项目(YB135-76);延边大学外国语语言文学一流学科建设项目(18YLPY13);延边大学2020年度校企合作项目(延大科合字[2020]15号)

Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model

Ya-hui ZHAO(),Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN   

  1. Department of Computer Science & Technology,Yanbian University,Yanji 133002,China
  • Received:2022-01-04 Online:2023-08-01 Published:2023-08-21

摘要:

针对主流翻译质量评估框架在低资源语料上表现较差,句子嵌入策略单一的问题,提出了一个基于跨语言预训练模型的朝汉翻译质量评估模型。首先,借鉴注意力思想提出一种融合跨层信息和词项位置的句子嵌入方法;其次,将跨语言预训练模型引入翻译质量评估任务中,缓解朝鲜语低资源环境带来的数据稀疏问题;最后,对句向量进行回归,实现机器翻译质量评估任务。实验结果表明:该模型能有效提升朝汉翻译质量评估任务性能,与质量评估任务领域主流模型QuEst++、Bilingual Expert、TransQuest相比,皮尔逊相关系数分别提升了0.226、0.156、0.034,斯皮尔曼相关系数分别提升了0.123、0.038、0.026。

关键词: 计算机应用, 翻译质量评估, 跨语言预训练模型, 句子嵌入

Abstract:

On low-resource corpus, the mainstream translation quality estimation models have poor performance. Meanwhile, the sentence embedding strategy is naive. In view of reasons mentioned above, a Korean-Chinese translation quality estimation based on cross-lingual pretraining model is proposed. Firstly, a cross-lingual sentence embedding method is proposed by drawing on the idea of attention. The method can effectively fuse the cross-layer information and token positions of the pre-trained model. Second, a cross-lingual pretraining model is introduced to the task as a way to alleviate the few-shot caused by the low-resource of Korean. Finally, the regression is performed on the sentence embedding vectors, so that the Korean-Chinese translation quality estimation can be completed. Experimental results show that the method can effectively improve the performance of the Korean-Chinese translation quality estimation task. Compared with QuEst++, Bilingual Expert, and TransQuest, the dominant models for quality estimation tasks, Pearson correlation coefficients improved by 0.226, 0.156, and 0.034, and Spearman correlation coefficients improved by 0.123, 0.038, and 0.026, respectively.

Key words: computer application technology, translation quality estimation, cross-lingual pretraining model, sentence embedding

中图分类号: 

  • TP391.1

图1

句子嵌入方法示意图"

图2

语言学注意力结构示意图"

图3

词项注意力结构示意图"

图4

朝汉翻译质量评估模型"

表2

各模型相关系数得分"

模型PearsonSpearman
QuEst++0.3970.471
Bilingual Expert0.4760.556
TransQuest0.5890.568
本文0.6230.594

表3

WMT2020皮尔逊相关系数得分"

模型Ro-EnEt-EnNe-EnSi-En
TransQuest0.8980.7750.7910.652
本文0.9020.8200.8270.705

表4

不同句子嵌入方法模型性能"

句子嵌入方法Pearson↑Spearman↓MAE↓RMSE↓
Last[CLS]0.5890.5680.1600.204
Last+GRU0.5970.5710.1450.180
Conv(0-24)0.5540.5440.1530.191
Conv(20-24)0.6050.5820.1500.188
Attention(1-24)0.6090.5910.1460.185
Attention(0-24)0.6230.5940.1440.183

表5

不同注意力顺序模型性能"

注意力方法PearsonSpearmanMAERMSE
LangAtten0.5920.5700.1590.190
TokenAtten0.6000.5720.1450.189
TokenAtten+LangAtten0.6130.5920.1490.187
LangAtten+TokenAtten0.6230.5940.1440.183

图5

结果示例"

1 Kim H, Lee J. Predictor-estimator using multilevel task learning with stack propagation for neural quality estimation[J]. ACM Transactions on Asian and Low-resource Language Information Processing, 2017, 2: 562-568.
2 Takahashi K, Sudoh K, Nakamura S. Automatic machine translation evaluation using source language inputs and cross-lingual language model[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Seattle, Washington, United States, 2020: 3553-3558.
3 Ranasinghe T, Orasan C, Mitkov R. TransQuest: translation quality estimation with cross-lingual transformers[C]∥Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 2020: 5070-5081.
4 Jawahar G, Sagot B, Eddah D. What does BERT learn about the structure of language? [C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 3651-3657.
5 Pires T, Schlinger E, Garrette D. How multilingual is multilingual BERT? [C]∥Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 4996-5001.
6 Specia L, Shah K, Desouza J, et al. QuEst: a translation quality estimation framework[C]∥Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Sofia, Bulgaria, 2013: 79-84.
7 Fan K, Wang J Y, Li B, et al. "Bilingual Expert" can find translation errors[C]∥Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Phoenix, United States, 2019: 6367-6374.
8 Liu Y H, Ott M, Goyal N, et al. RoBERTa: a robustly optimized bert pretraining approach[C]∥Proceedings of the 2020 International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020: 1-15.
9 Devlin J, Chang M, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]∥Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, United States, 2019: 4171-4186.
10 Conneau A, Lample G. Cross-lingual language model pretraining[J]. Advances in Neural Information Processing Systems, 2019, 32: 7059-7069.
11 Conneau A, Khandelwal K, Goyal N, et al. Unsupervised cross-lingual representation learning at scale[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Seattle, Washington, United States, 2020: 8840-8451.
12 Arora S, Liang Y Y, Ma T Y. A simple but tough-to-beat baseline for sentence embeddings[C]∥Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017: 1-16.
13 Conneau A, Kiela D, Schwenk H, et al. Supervised learning of universal sentence representations from natural language inference data[C]∥Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 2017: 670-680.
14 Logeswaran L, Lee H. An efficient framework for learning sentence representations[C]∥Proceedings of the 6th International Conference on Learning Representations, Pennsylvania, United States, 2018: 1-16.
15 Reimers N, Gurevych I, Reimers N, et al. Sentence-BERT: sentence embeddings using siamese BERT-networks[C]∥Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing, Hong Kong, China, 2019: 3982-3992.
16 Wang B, Kuo J. SBERT-WK: a sentence embedding method by dissecting BERT-based word models[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28: 2146-2157.
17 Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, United States, 2018: 7132-7141.
18 Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision, Antibes, France, 2018: 3-19.
19 赵亚慧, 杨飞扬, 张振国, 等. 基于强化学习和注意力机制的朝鲜语文本结构发现[J]. 吉林大学学报: 工学版, 2021, 51(4): 1387-1395.
Zhao Ya-hui, Yang Fei-yang, Zhang Zhen-guo, et al. Korean text structure discovery based on reinforcement learning and attention mechanism[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1387-1395.
20 李健, 熊琦, 胡雅婷, 等. 基于Transformer和隐马尔科夫模型的中文命名实体识别方法[J]. 吉林大学学报: 工学版,2023, 53(5): 1427-1434.
Li Jian, Xiong Qi, Hu Ya-ting, et al. Chinese named entity recognition method based on transformer and hidden markov model[J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1427-1434.
[1] 王连明,吴鑫. 基于姿态估计的物体3D运动参数测量方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2099-2108.
[2] 张则强,梁巍,谢梦柯,郑红斌. 混流双边拆卸线平衡问题的精英差分进化算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1297-1304.
[3] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[4] 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457.
[5] 姜宇,潘家铮,陈何淮,符凌智,齐红. 基于分割方法的繁体中文报纸文本检测[J]. 吉林大学学报(工学版), 2023, 53(4): 1146-1154.
[6] 于鹏,朴燕. 基于多尺度特征的行人重识别属性提取新方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1155-1162.
[7] 潘弘洋,刘昭,杨波,孙庚,刘衍珩. 基于新一代通信技术的无人机系统群体智能方法综述[J]. 吉林大学学报(工学版), 2023, 53(3): 629-642.
[8] 何颖,樊俊松,王巍,孙庚,刘衍珩. 无人机空地安全通信与航迹规划的多目标联合优化方法[J]. 吉林大学学报(工学版), 2023, 53(3): 913-922.
[9] 吴振宇,刘小飞,王义普. 基于DKRRT*-APF算法的无人系统轨迹规划[J]. 吉林大学学报(工学版), 2023, 53(3): 781-791.
[10] 陶博,颜伏伍,尹智帅,武冬梅. 基于高精度地图增强的三维目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 802-809.
[11] 薛珊,张亚亮,吕琼莹,曹国华. 复杂背景下的反无人机系统目标检测算法[J]. 吉林大学学报(工学版), 2023, 53(3): 891-901.
[12] 祁贤雨,王巍,王琳,赵玉飞,董彦鹏. 基于物体语义栅格地图的语义拓扑地图构建方法[J]. 吉林大学学报(工学版), 2023, 53(2): 569-575.
[13] 时小虎,吴佳琦,吴春国,程石,翁小辉,常志勇. 基于残差网络的弯道增强车道线检测方法[J]. 吉林大学学报(工学版), 2023, 53(2): 584-592.
[14] 郭鹏,赵文超,雷坤. 基于改进Jaya算法的双资源约束柔性作业车间调度[J]. 吉林大学学报(工学版), 2023, 53(2): 480-487.
[15] 刘近贞,高国辉,熊慧. 用于脑组织分割的多尺度注意网络[J]. 吉林大学学报(工学版), 2023, 53(2): 576-583.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!