吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1612-1623.doi: 10.13229/j.cnki.jdxbgxb.20220930

• 交通运输工程·土木工程 • 上一篇    

土工格栅加筋建筑垃圾土循环剪切试验

李丽华1,2(),李孜健1,2,肖衡林1,2(),曹文哲1,2,周鑫隆1,2,黄少平1,2   

  1. 1.湖北工业大学 土木建筑与环境学院,武汉 430068
    2.湖北工业大学 河湖健康智慧感知与生态修复教育部重点实验室,武汉 430068
  • 收稿日期:2022-07-24 出版日期:2024-06-01 发布日期:2024-07-23
  • 通讯作者: 肖衡林 E-mail:researchmailbox@163.com;xiaohenglin_0909@163.com
  • 作者简介:李丽华(1978-),女,教授,博士.研究方向:加筋土,路基工程,环境岩土工程.E-mail:researchmailbox@163.com
  • 基金资助:
    国家自然科学基金项目(52278347);湖北省自然科学基金创新群体项目(2024AFA009);湖北省重点研发计划项目(2022BCA059);湖北工业大学杰出人才基金项目(XJ2021000501)

Experiment on cyclic shear of geosynthetic reinforced construction waste soil

Li-hua LI1,2(),Zi-jian LI1,2,Heng-lin XIAO1,2(),Wen-zhe CAO1,2,Xin-long ZHOU1,2,Shao-ping HUANG1,2   

  1. 1.School of Civil Engineering,Architecture and Environment,Hubei University of Technology,Wuhan 430068,China
    2.Key Laboratory of Health Intelligent Perception and Ecological Restoration of River and Lake,Ministry of Education,Hubei University of Technology,Wuhan 430068,China
  • Received:2022-07-24 Online:2024-06-01 Published:2024-07-23
  • Contact: Heng-lin XIAO E-mail:researchmailbox@163.com;xiaohenglin_0909@163.com

摘要:

为研究不同大小法向应力及剪切幅值条件下双向土工格栅加筋建筑垃圾土剪切特性,采用大型直剪仪对该加筋土开展单调直剪试验和循环剪切试验,揭示加筋建筑垃圾土循环剪切特性影响规律及工作机制。结果表明:建筑垃圾土在单调直剪试验和循环后直剪试验中均出现明显剪切软化现象,但同等法向应力条件下循环剪切后试样的界面抗剪增和残余强度均更高;在单调直剪试验中,剪切初期试样小幅度剪胀,随后明显剪缩,当剪切位移超过20 mm后试样剪缩速度变缓;在循环后单调直剪试验中,试样则表现出明显剪胀,且在相同剪切位移下会产生更大的体变;在循环剪切过程中,试样发生明显剪切硬化,且在循环剪切卸载方向上剪切硬化现象更为明显,阻尼比随界面刚度的增大而不断减小,在同一剪切幅值条件下,随着循环次数的增加,不同法向应力下界面阻尼比逐渐减小并趋于同一数值;不同方向上最大剪应力均随法向应力和剪切幅值的增大而增大,且随着循环次数的增加,剪切硬化程度也逐渐提高;循环后加筋建筑垃圾土试样抗剪强度明显提高,黏聚力和摩擦角增幅分别为22.4%和9.6%。

关键词: 岩土工程, 加筋建筑垃圾土, 双向土工格栅, 循环剪切试验, 单调直剪试验

Abstract:

In order to study the shear behavior of geosynthetic-soil interface reinforcement of biaxial geogrid reinforced construction waste under different sizes normal stress and shear amplitude, Monotonic direct shear test and cyclic shear test of the reinforced soil were carried out by large direct shear apparatus, thus, the influence law and mechanism of normal stress and shear amplitude on shear characteristics of reinforcement-soil interface were revealed. Results show that obvious shear softening occurs in both monotonic and post cyclic direct shear tests, however, the interfacial shear strength and residual strength of the specimens are greater after cyclic shear under the same normal stress conditions. In monotonic direct shear test, the sample exhibits a small expansion at the initial stage of shearing, followed by significant shrinkage, the shear shrinkage rate slows down when the shear displacement exceeds 20 mm. In the post cyclic monotonic direct shear test, the specimen shows obvious dilatancy and produces larger volumetric strain under the same shear displacement. During the cyclic shearing process, the sample undergoes obvious shear hardening, and the shear hardening phenomenon is more obvious in the cyclic shear unloading direction, damping ratio decreases with the increase of interface stiffness, under the same shear amplitude, the damping ratio decreases with the increase of cyclic number and tends to the same value under different normal stresses. The maximum shear stress in different directions increases with the increase of normal stress and shear amplitude, with the increase of cycle times, the degree of shear hardening also increases gradually. The shear strength of reinforced construction waste soil increased significantly after cyclic loading, and the increase of cohesion and internal friction angle is 22.4 % and 9.6 % respectively.

Key words: geotechnical engineering, reinforced construction waste soil, biaxial geogrid, cyclic shear test, monotonic direct shear test

中图分类号: 

  • TU41

图1

大型循环直剪仪"

图2

混合后的建筑垃圾填料"

图3

建筑垃圾填料击实曲线"

图4

建筑垃圾填料颗粒级配曲线"

图5

试验用土工格栅"

表1

格栅技术指标"

材料单位面积质量/(g·m-2网孔尺寸长×宽/mm极限延伸率/%极限抗拉强度/(kN·m-1
横向纵向横向纵向
聚丙烯25035×2513.215.620

表2

试验方案"

试验类型法向应力/kPa剪切幅值/mm
直接剪切试验100, 200, 300-
循环剪切试验100, 200, 3002
2001,2,3
循环后直剪试验100, 200, 3002
2001,2,3

图6

循环加载路径"

图7

剪切应力-剪切位移关系曲线"

图8

剪切位移-竖向位移关系曲线"

图9

不同法向应力下的剪切荷载-剪切位移曲线(Aw=2?mm)"

图10

不同剪切幅值下的界面剪切应力-剪切位移曲线"

图11

不同剪切幅值下的界面剪切位移-竖向位移曲线"

图12

不同法向应力下循环剪切试验中时间-剪应力关系曲线"

图13

不同法向应力下筋-土界面循环次数-剪切应力峰值关系曲线"

图14

不同剪切幅值下筋-土界面循环次数-剪切应力峰值关系曲线"

图15

滞回圈中阻尼比计算"

图16

不同法向应力下剪切刚度随循环次数的变化"

图17

不同法向应力下阻尼比随循环次数的变化"

图18

不同剪切幅值下剪切刚度随循环次数的变化"

图19

不同剪切幅值下阻尼比随循环次数的变化"

图20

不同法向应力下循环前、后剪应力-剪切位移关系曲线对比"

图21

循环前、后直剪试验的剪切位移-竖向位移关系曲线"

图22

单调直剪试验与循环后直剪试验的界面抗剪强度包络曲线对比图"

表3

单调直剪试验与循环后直剪试验界面抗剪强度"

试验类型c/kPaφ/(°)
直剪试验124.435.4
循环后直剪试验152.338.8
1 张小娟. 国内城市建筑垃圾资源化研究分析[D].西安:西安建筑科技大学管理学院, 2013.
Zhang Xiao-juan. Studies and analysis on the resourcization of city construction waste in China[D]. Xi'an: School of Management, Xi'an University of Architectural Science and Technology, 2013.
2 李丽华, 文贝, 胡智, 等. 建筑垃圾填料与土工合成材料加筋剪切性能研究[J]. 武汉大学学报:工学版, 2019, 52(4): 311-316.
Li Li-hua, Wen Bei, Hu Zhi, et al. Study on reinforced shear behavior ofconstruction waste filler and geosynthetics[J]. Engineering Journal of Wuhan University, 2019, 52(4): 311-316.
3 Zhou Xin-long, Hu Shao-hua, Zhang Guang, et al. Experimental investigation and mathematical strength model study on the mechanical properties of cemented paste backfill[J]. Construction and Building Materials, 2019, 226: 524-533.
4 唐娴, 王社良. 城市建筑垃圾路面基层应用研究[J]. 科技导报, 2009, 27(7): 88-90.
Tang Xian, Wang She-liang. Urban building waste materials used in base layers of road sueface[J]. Science & Technology Review, 2009, 27(7): 88-90.
5 Santos E C G, Vilar O M. Use of recycled construction and demolition wastes (RCDW) as backfill of reinforced soil structures[J/OL]. [2022-07-15].
6 Arulrajah A, Rahman M A, Piratheepan J, et al. Evaluation of interface shear strength properties of geogrid-reinforced construction and demolition materials using a modified large-scale direct shear testing apparatus[J]. Journal of Materials in Civil Engineering, 2013, 26(5): 974-982.
7 Arulrajah A, Rahman M A, Piratheepan J, et al. Interface shear strength testing of geogrid-reinforced construction and demolition materials[J]. Advances in Civil Engineering Materials, 2013, 2(1): 189-200.
8 Ying Meng-jie, Liu Fei-yu, Wang Jun, et al. Coupling effects of particle shape and cyclic shear history on shear properties of coarse-grained soil–geogrid interface[J]. Transportation Geotechnics, 2020, 27:No. 100504.
9 李丽华, 秦浪灵, 肖衡林, 等. 加筋建筑垃圾土大型动三轴试验及加筋机制探讨[J]. 岩石力学与工程学报, 2020, 39(8): 1682-1695.
Li Li-hua, Qin Lang-ling, Xiao Heng-lin, et al. Large dynamic triaxial test study on reinforcement mechanisms of reinforced construction waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1682-1695.
10 李丽华, 臧天宝, 刘永莉, 等. 纤维底渣混合土循环剪切性能研究[J]. 岩石力学与工程学报, 2021, 40(1): 196-205.
Li Li-hua, Zang Tian-bao, Liu Yong-li, et al. Cyclic shear performance of fiber bottom ash mixed soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(1): 196-205.
11 Pinho-Lopes M, Lopes M. Soil-geosynthetic interaction in inclined-plane shear and geosynthetic short-term tensile response-influence of installation damage[J]. Construction and Building Materials, 2021, 274(2):No. 122018.
12 Yang K H, Chiang J, Lai C W, et al. Performance of geosynthetic-reinforced soil foundations across a normal fault[J]. Geotextiles and Geomembranes, 2020, 48(3): 357-373.
13 De A, Zimmie T F. Estimation of dynamic interfacial properties of geosynthetics[J]. Geosynthetics International, 1998, 5(1/2): 17-39.
14 Abdel-Rahman A H, Ibbrahim A M. Soil-geogrid behavior subjected to cyclic loading[J]. Geo-frontiers: Advances in Geotechnical Engineering, 2011: 3087-3096.
15 刘方成, 王将, 吴孟桃, 等. 土工格栅加筋橡胶砂应力-应变特性试验[J]. 吉林大学学报:工学版, 2023,53(9): 2542-2553.
Liu Fang-cheng, Wang Jiang, Wu Meng-cheng, et al. Stress⁃strain characteristics of geogrid reinforced rubber sand mixtures[J]. Journal of Jilin University (Engineering and Technology Edition), 2023,53(9): 2542-2553.
16 汪明元, 施戈亮, 丁金华, 等. 土工格栅与压实膨胀土的界面模型及其参数[J]. 吉林大学学报:工学版, 2010,40(3):688-693.
Wang Ming-yuan, Shi Ge-liang, Ding Jin-hua, et al. Interface model and its parameters between geogrids and compacted expansive soil[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 688-693.
17 刘飞禹, 王攀, 王军, 等. 不同剪切速率下格栅-土界面循环剪切及其后直剪特性[J]. 岩石力学与工程学报, 2016, 35(2): 387-395.
Liu Fei-yu, Wang Pan, Wang Jun,et al. Cyclic and post-cyclic shear behavior of sand-geogrid interface under different shear rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 387-395.
18 刘飞禹, 施静, 王军, 等. 三明治形加筋土筋-土界面动力剪切特性[J]. 岩土力学, 2018, 39(6): 1991-1998.
Liu Fei-yu, Shi Jing, Wang Jun, et al. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1991-1998.
19 赖丰文, 李丽萍, 陈福全,等. 双向土工格栅与砂土界面循环剪切特性研究[J]. 中国科技论文, 2017, 12(13): 1559-1564.
Lai Feng-wen, Li Li-ping, Chen Fu-quan, et al. The cyclic shear behavior of interface between sand-biaxial geogrid[J]. China Science Paper, 2017, 12(13): 1559-1564.
20 左政,杨广庆,王贺,等.土工格室规格对加筋土剪切性能的影响[J].岩土工程学报, 2022, 44(6):1053-1060.
Zuo Zheng, Yang Guang-qing, Wang He, et al. Effect of geocell size on the shear behavior of reinforced soil[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1053-1060.
21 Morsy A M, Zornberg J G. Soil-reinforcement interaction: stress regime evolution in geosynthetic-reinforced soils[J]. Geotextiles and Geomembranes, 2020, 49(1): 323-342.
22 徐超, 石志龙. 循环荷载特征对筋土界面剪切特性的影响试验[J]. 中国公路学报, 2011, 24(3): 1-7.
Xu Chao, Shi Zhi-long. Experiment of influence of cyclic load characteristics on shear properties of geogrid-soil interface[J]. China Journal of Highway and Transport, 2011, 24(3): 1-7.
23 Sweta K, Hussaini S. Behavior evaluation of geogrid-reinforced ballast-subballast interface under shear condition[J]. Geotextiles and Geomembranes, 2019, 47(1): 23-31.
24 Ying Meng-jie, Wang Jun. Analysis of cyclic shear characteristics of reinforced soil interfaces under cyclic loading and unloading[J]. Geotextiles and Geomembranes, 2021, 50(1): 99-115.
25 林志伟. 基于综合利用建筑垃圾再生骨料混凝土的研究[D]. 昆明:昆明理工大学材料科学与工程学院, 2007.
Lin Zhi-wei. Research on recycled aggregate concrete of construction waste based on comprehensive utilization[D]. Kunming: School of Materials Science and Engineering, Kunming University of Science and Technology, 2007.
26 李炯. 河砂与建筑垃圾混合料回填路基工程特性研究[D]. 济南:山东大学土建与水利学院, 2017.
Li Jiong. Study on the characteristics of the mixture of river sand and construction waste in filling subgrade [D]. Jinan: School of Civil Engineering, Shandong University, 2017.
27 Chang Ji-Yun, Feng Shi-Jin. Dynamic shear behaviors of textured geomembrane/nonwoven geotextile interface under cyclic loading[J]. Geotextiles and Geomembranes, 2021, 49(2): 388-398.
28 Desai C S, Drumm E C, Zaman M M. Cyclic testing and modeling of interfaces[J]. Journal of Geotechnical Engineering, 1985, 111(6): 793-815.
29 Yegian M K, Kadakal U. Geosynthetic interface behavior under dynamic loading[J]. Geosynthetics International, 1998, 5(1/2): 1-16.
30 Nye C J, Fox P J. Dynamic shear behavior of a needle-punched geosynthetic clay liner[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2007, 133(8): 973-983.
31 Vieira C S, Lopes M L, Caldeira L M. Sand-geotextile interface characterisation through monotonic and cyclic direct shear tests[J]. Geosynthetics International, 2013, 20(1): 26-38.
[1] 何华飞,李兆平,符瑞安,马绍麟,黄明利. 考虑地层约束效应的预制侧墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1601-1611.
[2] 刘方成,王将,吴孟桃,补国斌,何杰. 土工格栅加筋橡胶砂应力-应变特性试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2542-2553.
[3] 宫亚峰,吴树正,毕海鹏,谭国金. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2321-2331.
[4] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[5] 宫亚峰,吴树正,毕海鹏,周冬明,谭国金,黄晓明. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832.
[6] 刘顺,唐小微,栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 159-169.
[7] 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855.
[8] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[9] 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637.
[10] 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640.
[11] 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164.
[12] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!