吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (6): 1601-1611.doi: 10.13229/j.cnki.jdxbgxb.20220858

• 交通运输工程·土木工程 • 上一篇    

考虑地层约束效应的预制侧墙节点抗震性能试验

何华飞1(),李兆平1(),符瑞安2,马绍麟1,黄明利1   

  1. 1.北京交通大学 土木建筑工程学院,北京 100044
    2.中铁第四勘察设计院集团有限公司,武汉 430063
  • 收稿日期:2022-07-05 出版日期:2024-06-01 发布日期:2024-07-23
  • 通讯作者: 李兆平 E-mail:19115020@bjtu.edu.cn;zhpli@bjtu.edu.cn
  • 作者简介:何华飞(1991-),男,博士研究生.研究方向:装配式车站结构抗震.E-mail:19115020@bjtu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFC0808705);国家自然科学基金项目(51678033);中铁第四勘察设计院集团有限公司科技研究开发计划项目(2021K026)

Experiment on seismic performance of prefabricated sidewall joints considering strata restraint effect

Hua-fei HE1(),Zhao-ping LI1(),Rui-an FU2,Shao-lin MA1,Ming-li HUANG1   

  1. 1.School of Civil Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.China Railway Siyuan Survey and Design Group Co. ,Ltd. ,Wuhan 430063,China
  • Received:2022-07-05 Online:2024-06-01 Published:2024-07-23
  • Contact: Zhao-ping LI E-mail:19115020@bjtu.edu.cn;zhpli@bjtu.edu.cn

摘要:

由于地下结构体系存在地层-结构相互作用的问题,常规的拟静力试验方法无法准确模拟地下装配式结构的受力特征。为此,本文提出了一种考虑地层约束效应影响的拟静力试验方法。研究了地层约束效应对榫卯连接预制侧墙试件及现浇侧墙试件的破坏模式、承载能力及耗能能力的影响。试验结果表明,土体约束效应的存在提高了预制侧墙试件的承载能力及耗能能力,但增大了节点区域混凝土的塑性损伤程度,这一结论在榫卯连接预制侧墙试件中体现得最明显。同时,本文提出了能够反映榫卯连接预制侧墙试件抗震性能的数值模型,结果表明,土体约束荷载对榫卯节点的承载力影响较大,但未显著改善榫卯节点的耗能能力。

关键词: 岩土工程, 预制侧墙结构, 地层约束效应, 试验研究, 数值模拟, 抗震性能

Abstract:

The conventional quasi-static test methods cannot accurately simulate the force characteristics of underground assembled structures due to the strata-structure interaction problem of underground structural systems. Therefore, a pseudo-static test method considering strata constraint effect is proposed, called strata restraint-pseudo-static method. The effects of strata restraint effect on the damage mode, load carrying capacity and energy dissipation capacity of prefabricated sidewall specimens with mortise-tenon joints (MTWJ), and cast-in-place sidewall (CWJ) specimens were investigated. The test results show that the presence of the strata restraint effect improves the load-bearing capacity and energy dissipation of the prefabricated sidewall specimens, but aggravates concrete plastic damage, which is most evident in prefabricated sidewall specimens with mortise-tenon joints. The numerical model that can respond to the seismic performance of MTWJ specimens is proposed, and the results show that the strata restraint load has a large effect on the bearing capacity, but it is not significant to improve the energy dissipation capacity of the mortise-tenon joint.

Key words: geotechnical engineering, prefabricated sidewall structure, strata restraint effect, experimental study, numerical simulation, seismic performance

中图分类号: 

  • U451

图1

地下结构体与地层作用的整体关系"

图2

传统拟静力法力学模型"

图3

地层约束-拟静力法力学模型"

图4

反应位移法水平方向基床系数计算模型"

图5

MTWJ试件及应变片布置(单位:mm)"

图6

CWJ试件及应变片布置(单位:mm)"

表1

混凝土及钢筋材料强度测试"

类型强度/MPa强度/MPa
混凝土55.1(抗压)2.9(抗拉)
钢筋447(屈服)645(极限)

图7

试验装置"

图8

位移及土体荷载加载制度"

图9

现浇构件破坏状态及裂缝分布"

图10

榫卯构件破坏状态及裂缝分布"

图11

试件骨架曲线"

表2

混凝土构件承载力试验结果"

试件编号加载方向屈服点峰值点极限点

延性系数

μ=Δu/Δy

位移/mm荷载/kN位移/mm荷载/kN位移/mm荷载/kN
CWJ正向33.83611.2752.03682.7156.09580.301.66
负向-35.91-702.53-51.99-802.68-55.74-682.281.55
MTWJ正向19.44232.6250.55330.9555.63281.312.86
负向-30.84-444.03-55.18-526.69-59.55-447.691.93

图12

侧墙试件在峰值点位置滞回环曲线"

图13

榫卯节点核心区域接触关系及有限元模型"

图14

加载试件的约束关系"

图15

有限元模拟结果与试验数据对比"

图16

轴压比对承载能力及耗能能力的影响"

图17

土体约束荷载对承载能力及耗能能力的影响"

1 Yang X, Lin F. Prefabrication technology for underground metro station structure[J]. Tunnelling and underground space technology, 2021, 108: No.103717.
2 李兆平, 李凯旋, 吕书清, 等. 装配式地铁车站结构双榫槽式接头应力演变规律试验研究[J]. 中国铁道科学, 2018, 39(5): 15-21.
Li Zhao-ping, Li Kai-xuan, Shu-qing Lyu, et al. Experimental study on stress evolution rule of double tenon-groove joints for prefabricated metro station structure[J]. China Railway Science, 2018, 39(5): 15-21.
3 李兆平,李守庆,苏会锋. 装配式地铁车站结构双榫槽接头抗弯刚度研究[J]. 土木工程学报, 2017, 50(): 14-18.
Li Zhao-ping, Li Shou-qing, Su Hui-feng, et al. Study on the bending stiffness for double tenon-groove joints of metro station constructed by using prefabricated structure[J]. China Civil Engineering Journal, 2017, 50(Sup.1): 14-18.
4 杨秀仁, 黄美群, 林放. 地铁车站预制装配式结构注浆式榫槽接头弯曲抵抗作用特性研究[J]. 土木工程学报, 2020, 53(2): 33-40.
Yang Xiu-ren, Huang Mei-qun, Lin Fang. Research on bending resistance characteristics of grouted mortise-tenon joints for prefabricated metro station structures[J]. China Civil Engineering Journal, 2020, 53(2): 33-40.
5 杨秀仁, 林放, 黄美群. 地铁车站预制装配式结构注浆式单榫接头抗弯刚度试验研究[J]. 土木工程学报, 2020, 53(3): 38-43.
Yang Xiu-ren, Lin Fang, Huang Mei-qun. Experimental research on flexural rigidity of grouted single mortise-tenon joints for prefabricated metro station structures[J]. China Civil Engineering Journal, 2020, 53(3): 38-43.
6 Ding P, Tao L, Yang X, et al. Three-dimensional dynamic response analysis of a single-ring structure in a prefabricated subway station[J]. Sustainable Cities and Society, 2019, 45: 271-286.
7 Tao L, Ding P, Shi C, et al. Shaking table test on seismic response characteristics of prefabricated subway station structure[J]. Tunnelling and Underground Space Technology, 2019, 91: No.102994.
8 Tao L, Ding P, Yang X, et al. Comparative study of the seismic performance of prefabricated and cast-in-place subway station structures by shaking table test[J]. Tunnelling and Underground Space Technology, 2020, 105: No.103583.
9 He H, Li Z. Effect mechanism of connection joints in fabricated station structures[J]. Applied Sciences, 2021, 11(24): No.11927.
10 杨秀仁. 我国预制装配式地铁车站建造技术发展现状与展望[J]. 隧道建设, 2021, 41(11): 1849-1870.
Yang Xiu-ren. Development and prospect of construction technology for prefabricated metro station in China[J]. Tunnel Construction, 2021, 41(11): 1849-1870.
11 路林海,王国富,王婉婷,等. 地铁车站基坑预制桩-墙结构设计与受力分析[J]. 铁道工程学报, 2017, 34(10): 93-98.
Lu Lin-hai, Wang Guo-fu, Wang Wan-ting, et al. Research on the structure design and mechanics analysis of the precast pile-retaining wall for metro station[J]. Journal of Railway Engineering Society, 2017, 34(10): 93-98.
12 Liu H, Xu C, Du X. Seismic response analysis of assembled monolithic subway station in the transverse direction[J]. Engineering Structures, 2020, 219: No.110970.
13 Liu H, Yan Q, Du X. Seismic performance comparison between precast beam joints and cast-in-place beam joints[J]. Advances in Structural Engineering, 2017, 20(9): 1299-1314.
14 杜修力,刘洪涛,路德春,等. 装配整体式地铁车站侧墙底节点抗震性能研究[J]. 土木工程学报, 2017, 50(4): 38-47.
Du Xiu-li, Liu Hong-tao, Lu De-chun, et al. Study on seismic performance of sidewall joints in assembled monolithic subway station[J]. China Civil Engineering Journal, 2017, 50(4): 38-47.
15 Kawashima K. Seismic design of underground structures in soft ground—a review[J/OL]. [2022-06-25].
16 刘顺, 唐小微, 栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报: 工学版, 2023, 53(1): 159-169.
Liu Shun, Tang Xiao-wei, Luan Yi-xiao. Influence of rayleigh damping coefficient on seismic response of subway structure in liquefiable soil[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 159-169.
17 庄海洋, 王雪剑, 王瑞, 等. 土-地铁动力相互作用体系侧向变形特征研究[J]. 岩土工程学报, 2017, 39(10): 1761-1769.
Zhuang Hai-yang, Wang Xue-jian, Wang Rui, et al. Characteristics of lateral deformation of soil-subway dynamic interaction system[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1761-1769.
18 庄海洋,吴滨,陈国兴. 土-大型地铁地下车站结构动力接触效应研究[J]. 防灾减灾工程学报, 2014, 34(6): 678-686.
Zhuang Hai-yang, Wu Bin, Chen Guo-xing. Study on dynamic contact properties of soil-subway underground structure interaction system[J]. Journal of Disaster Prevention and Mitigation Engineering, 2014, 34(6): 678-686.
19 Sun Q, Dias D, Sousa L R. Soft soil layer-tunnel interaction under seismic loading[J]. Tunnelling and Underground Space Technology, 2020, 98: No.103329.
20 Qiu D, Chen J, Xu Q. Comparative numerical analysis on dynamic effects of underground large scale frame structures under seismic waves[J]. Tunnelling and Underground Space Technology, 2019, 83: 35-50.
21 Qiu D, Chen J, Xu Q. Dynamic responses and damage forms analysis of underground large scale frame structures under oblique SV seismic waves[J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 216-220.
22 江志伟,刘晶波. 埋深对地下结构振动台模型试验结果的影响[J]. 工程力学, 2021, 38 (): 209-215.
Jiang Zhi-wei, Liu Jing-bo. Influence of buried depth on the seismic response of underground structures in 1-a shaking table tests[J]. Engineering Mechanics, 2021, 38 (Sup.1): 209-215.
23 Liu C, Zhang S L, Zhang D L, et al. Model tests on progressive collapse mechanism of a shallow subway tunnel in soft upper and hard lower composite strata[J]. Tunnelling and Underground Space Technology, 2022, 131: No.104824.
24 . 建筑抗震试验规程 [S].
25 . 城市轨道交通结构抗震设计规范 [S].
26 Kawajima K. A Seismic Design of Underground Structure[M]. Kajima: Kajima Institute Publishing Co. Ltd, 1994.
27 . 混凝土结构设计规范 [S].
28 封坤, 何川, 肖明清. 高轴压作用下盾构隧道复杂接缝面管片接头抗弯试验[J]. 土木工程学报, 2016, 49(8): 99-110.
Feng Kun, He Chuan, Xiao Ming-qing. Bending tests of segment joint with complex interface for shield tunnel under high axial pressure[J]. China Civil Engineering Journal, 2016, 49(8): 99-110.
29 Ding W Q, Chen X Q, Jin Y L, et al. Flexural behavior of segmental joint containing double rows of bolts: experiment and simulation[J]. Tunnelling and Underground Space Technology, 2021, 112: No.103940.
30 柳献, 叶宇航, 刘震, 等. 连接螺栓对类矩形盾构隧道结构极限承载力影响的试验研究与分析[J]. 土木工程学报, 2018, 51(8): 81-88.
Liu Xian, Ye Yu-hang, Liu Zhen, et al. Experimental investigation and analysis on effect of connecting bolts on ultimate bearing capacity of quasi-rectangular shield tunnel[J]. China Civil Engineering Journal, 2018, 51(8): 81-88.
31 王建宁, 庄海洋, 马国伟, 等. 软土层场地复杂地铁地下车站结构地震反应分析[J]. 振动与冲击, 2019, 38(19): 115-122.
Wang Jian-ning, Zhuang Hai-yang, Ma Guo-wei, et al. Seismic responses of a complicated subway underground station in soft soil layers[J]. Journal of Vibration and Shock, 2019, 38(19): 115-122.
32 周海祚, 郑刚, 李笑穹, 等. 软土地铁结构非线性地震反应分析[J]. 天津大学学报:自然科学与工程技术版, 2016, 49(4): 361-368.
Zhou Hai-zuo, Zheng Gang, Li Xiao-qiong, et al. Nonlinear seismic responses analysis of subway structure in soft soil[J]. Journal of Tianjin University(Science and Technology), 2016, 49(4): 361-368.
[1] 娄淑梅,李一明,李鑫,陈鹏,白雪峰,程宝嘉. 基于BP神经网络和Arrhenius本构模型的石墨烯/7075复合材料热变形行为[J]. 吉林大学学报(工学版), 2024, 54(5): 1237-1245.
[2] 赵秋,陈鹏,赵煜炜,余澳. 台后设置拱形结构的无缝桥梁整体受力性能[J]. 吉林大学学报(工学版), 2024, 54(4): 1016-1027.
[3] 卫星,高亚杰,康志锐,刘宇辰,赵骏铭,肖林. 低温环境下栓钉环焊缝焊接残余应力场数值模拟[J]. 吉林大学学报(工学版), 2024, 54(1): 198-208.
[4] 郑植,袁佩,金轩慧,魏思斯,耿波. 桥墩复合材料柔性防撞护舷试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2581-2590.
[5] 刘方成,王将,吴孟桃,补国斌,何杰. 土工格栅加筋橡胶砂应力-应变特性试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2542-2553.
[6] 雷鸣,尹思阳,王德玲,张继承,路世伟. 基于静力推覆分析算法的高层建筑混凝土核心筒抗震性能模拟[J]. 吉林大学学报(工学版), 2023, 53(9): 2573-2580.
[7] 宫亚峰,吴树正,毕海鹏,谭国金. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2321-2331.
[8] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[9] 邸振勇,杨新辉,林霄. 基于荷载⁃位移滞回曲线的建筑双梁⁃柱节点抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(7): 2061-2066.
[10] 王峰,刘双瑞,王佳盈,宋佳玲,王俊,张久鹏,黄晓明. 尺寸和形状效应对多孔结构风阻系数的影响[J]. 吉林大学学报(工学版), 2023, 53(6): 1677-1685.
[11] 宫亚峰,吴树正,毕海鹏,周冬明,谭国金,黄晓明. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832.
[12] 顾正伟,张攀,吕东冶,吴春利,杨忠,谭国金,黄晓明. 基于数值仿真的简支梁桥震致残余位移分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1711-1718.
[13] 王林峰,夏万春,徐浪,黄晓明,谭国金,张继旭. 板簧式减震锚头结构及抗震性能分析[J]. 吉林大学学报(工学版), 2023, 53(6): 1842-1852.
[14] 魏海斌,韩栓业,毕海鹏,刘琼辉,马子鹏. 智能感知道路主动除冰雪系统及实验技术[J]. 吉林大学学报(工学版), 2023, 53(5): 1411-1417.
[15] 金敬福,董新桔,贾志成,王康,贺连彬,邹猛,齐迎春. 板簧式弹性金属车轮胎面弹片结构优化[J]. 吉林大学学报(工学版), 2023, 53(4): 964-972.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!