吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (8): 2287-2297.doi: 10.13229/j.cnki.jdxbgxb.20211145

• 交通运输工程·土木工程 • 上一篇    

公路交叉口照明和限速对视觉搜索能力的影响

李洪涛1(),王琳虹1(),李俊达2   

  1. 1.吉林大学 交通学院,长春 130022
    2.中汽研软件测评(天津)有限公司,天津 300300
  • 收稿日期:2021-10-30 出版日期:2023-08-01 发布日期:2023-08-21
  • 通讯作者: 王琳虹 E-mail:2385289244@qq.com;wanghonglin0520@126.com
  • 作者简介:李洪涛(1995-),男,博士研究生.研究方向:驾驶行为、驾驶安全辅助系统开发.E-mail:2385289244@qq.com
  • 基金资助:
    国家自然科学基金面上项目(71971097);国家重点研发计划项目(2018YFB1600501);国家自然科学基金青年科学基金项目(52002143)

Influence of lighting and speed limit on visual search ability at highway intersections

Hong-tao LI1(),Lin-hong WANG1(),Jun-da LI2   

  1. 1.Transportation College,Jilin University,Changchun 130022,China
    2.China Auto Research Software Evaluation (Tianjin) Co. ,Ltd. ,Tianjin 300300,China
  • Received:2021-10-30 Online:2023-08-01 Published:2023-08-21
  • Contact: Lin-hong WANG E-mail:2385289244@qq.com;wanghonglin0520@126.com

摘要:

为解决夜间车辆在村镇无信号公路交叉口易与自行车或行人碰撞的问题,基于注意分配理论将驾驶人视野图片亮度、凝视点分布面积、注视点一次马尔可夫平稳分布和累计注视时间作为评价指标,结合Logistics回归构建视觉搜索能力量化模型。设计模拟驾驶试验,采集6种车速和4种照明下的数据验证模型,结果表明模型的正确分类百分比为93.45%。不同照明限速方案的对比结果表明,夜间村镇附近公路交叉口段限速应设为50 km/h,路面平均照度应不低于10 lx。

关键词: 交通运输系统工程, 视觉认知特性, 注意分配理论, 环境照明, 夜间最高限速, 视觉搜索能力

Abstract:

To improve the nighttime safety level of the unsignalized highway intersections that near villages, and reduce the likelihood of crashes between vehicles, bicycles and pedestrians, we used the attention distribution theory and combined with Logistics regression to construct the quantitative model of visual search ability. We selected the pixel brightness of drivers' visual field pictures, gaze area, one-time Markov stationary distribution and cumulative fixation time percentage as the attention distribution indicators. A simulation experiment scenario was built based on simulated driver, and the eye movement data of drivers under six speeds and four lighting schemes were collected to verify the model. The results show that the overall correct percentage of classification of the model is 93.45%. The maximum speed limit of highway intersections near villages should be set at 50 km/h, and the average road surface illuminance should not be less than 10 lx.

Key words: engineering of communication and transportation system, visual perception, attention distribution theory, ambient lighting, maximum speed limit at night, visual search ability

中图分类号: 

  • U491.25

图1

兴趣区域划分示意图"

图2

4种照明方案的场景"

图3

行人和自行车出现时的场景图片"

表1

各车速下两种突发事件的触发距离"

车速/(km·h-1自行车触发距离/m行人触发距离/m
80118448
70100386
6088333
5078271
4062223
3048166

表2

不同突发事件下的GA组间效应检验"

突发事件类型检验对象组自由度统计量F显著性p
自行车照明30.4090.747
速度577.5440.000
照明-速度150.3330.992
行人照明33.8610.010
速度575.8610.000
照明-速度150.3380.991

图4

自行车组不同速度下GA均值"

图5

行人组不同速度下GA均值"

图6

行人组不同照明条件下GA均值"

表3

不同突发事件下的平稳分布概率组间效应检验"

突发事件类型检验对象组自由度统计量F显著性p
自行车照明30.6690.571
速度54.7170.000
照明-速度150.8320.641
行人照明310.4510.000
速度523.8020.000
照明-速度150.9900.465

图7

自行车组不同速度下平稳分布概率均值"

图8

行人组不同速度下平稳分布概率均值"

图9

行人组不同照明条件下平稳分布概率均值"

表4

自行车组累计注视时间百分比描述统计"

兴趣区域最小值/%最大值/%均值/%合计/%
道路左侧外侧2.1720.346.719.28
内侧08.022.57
道路中央远方9.3455.3131.7165.35
前方15.2250.2833.64
道路右侧内侧014.174.2919.65
外侧7.1934.4915.36
仪表盘012.525.715.71

表5

行人组累计注视时间百分比描述统计"

兴趣区域最小值/%最大值/%均值/%合计/%
道路左侧外侧1.1512.715.738.73
内侧08.593.00
道路中央远方19.6262.1343.4079.60
前方22.3766.8436.2
道路右侧内侧05.222.137.33
外侧2.1811.785.20
仪表盘015.914.274.27

表6

自行车组验证结果"

样本正确预测数错误预测数总测数正确百分比/%
合计1571116893.45
安全143815194.70
危险1431782.35

表7

行人组验证结果"

样本正确预测数错误预测数总测数正确百分比/%
合计1571116893.45
安全147915694.23
危险1021283.33

表8

各照明、速度下危险试验次数统计"

照明方案限速/(km·h-1自行车组行人组危险总次数
危险次数Ave(PSd(P危险次数Ave(PSd(P
无照明80250.7150.270230.6160.23848
70190.8980.126120.8590.13931
6090.9500.05280.9360.06717
5050.9970.00300.9950.0042
4000.9980.00200.9990.0020
3000.9990.00101.0000.0000
较暗照明80120.7750.31660.7850.16718
7060.9430.08940.9320.06510
6000.9750.04050.9260.1151
5000.9930.01000.9980.0030
4000.9990.00100.9990.0010
3001.0000.00001.0000.0000
正常照明8060.8880.11240.9890.01710
7040.9690.03400.9950.0124
6000.9910.01000.9950.0120
5000.9960.00600.9990.0020
4000.9990.00100.9980.0040
3001.0000.00001.0000.0000
较亮照明8020.9290.15400.9940.0132
7000.9830.02000.9940.0100
6000.9950.00701.0000.0000
5000.9980.00301.0000.0000
4000.9990.00101.0000.0000
3001.0000.00001.0000.0000
1 Monsere C M, Fischer E L. Safety effects of reducing freeway illumination for energy conservation[J]. Accident Analysis and Prevention, 2008, 40(5): 1773-1780.
2 Goswamy A, Hallmark S, Litteral T, et al. Safety evaluation of destination lighting treatment at stop controlled cross-intersections[J]. Transportation Research Record, 2018, 2672(16): 113-121.
3 Arash M R, Bismark R D K A, Yongdoo L. Statistical modeling of total crash frequency at highway intersections[J]. Journal of Traffic and Transportation Engineering (English Edition), 2016, 3(2): 166-171.
4 Bullough J D, Donnell E T, Rea M S. To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections[J]. Accident Analysis and Prevention, 2013, 53: 65-77.
5 Hu W. Raising the speed limit from 75 to 80 mph on Utah rural interstates: effects on vehicle speeds and speed variance[J]. Journal of Safety Research, 2017, 61: 83-92.
6 Himes S, Gross F, Nichols M, et al. Safety evaluation of change in posted speed limit from 65 to 70 mph on rural Virginia interstate system[J]. Transportation Research Record, 2018, 2672(38): 35-45.
7 Ardakani H R, Azaraz S. Rural speed limit selection concerning the crash severity reduction: ANN method[C]∥5th International Conference on Transportation Information and Safety, Liverpool, UK, 2019: 1056-1061.
8 Huang Y, Fang D, Tan F, et al. Study on the speed limit at night in expressway maintenance area[C]∥IOP Conference Series: Earth and Environmental Science, Singapore, 2020: 012097.
9 Sakhare R S, Desai J C, Mathew J K, et al. Evaluation of the impact of presence lighting and digital speed limit trailers on interstate speeds in Indiana work zones[J]. Journal of Transportation Technologies, 2021, 11(2): 157-167.
10 Jgerbrand A K, Sjbergh J. Effects of weather conditions, light conditions, and road lighting on vehicle speed[J]. SpringerPlus, 2016, 5(1): 27186469.
11 李安祺, 唐阳山, 陈忠炜.夜间驾驶员行车安全影响因素研究[J].汽车实用技术,2019(14):211-212.
Li An-qi, Tang Yang-shan, Chen Zhong-wei.Study on influencing factors of driver's driving safety at night[J]. Automobile Applied Technology, 2019(14): 211-212.
12 程国柱, 程瑞, 薛长龙, 等. 高速公路改扩建的渐变安全限速设置方法[J]. 哈尔滨工业大学学报, 2020, 52(9): 185-192.
Cheng Guo-zhu, Cheng Rui, Xue Chang-long, et al.Setting of gradient speed limit for safety in freeway reconstruction and extension[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 185-192.
13 Cheng G, Cheng R. Optimizing speed limits upstream of freeway reconstruction and expansion work zones based on driver characteristics[J]. Journal of Transportation Engineering Part A Systems, 2020, 146(7): 04020066.
14 薛长龙, 刘兴旺, 程国柱, 等. 基于驾驶人特性的高速公路改扩建工作区上游限速值研究[J]. 石家庄铁道大学学报: 自然科学版, 2020, 33(3): 45-51.
Xue Chang-long, Liu Xing-wang, Cheng Guo-zhu, et al. Speed limit value at the upstream of highway reconstruction and expansion work zones based on driver characteristics[J]. Journal of Shijiazhuang Tiedao University (Natural Science Edition), 2020, 33(3): 45-51.
15 Hu H, Cheng M, Gao F, et al. Driver's preview modeling based on visual characteristics through actual vehicle tests[J]. Sensors, 2020, 20(21): 20216237.
16 Hu H Y, Liu J R, Gao Z H, et al. Driver identification using 1D convolutional neural networks with vehicular CAN signals[J]. IET Intelligent Transport System, 2020,14(13): 1799-1809.
17 Han X, Shao Y, Yang S, et al. Entropy-based effect evaluation of delineators in tunnels on drivers' gaze behavior[J]. Entropy, 2020, 22(1): 22010113.
18 Wertheim T, Dunsky I L. Peripheral visual acuity[J]. Optometry and Vision Science, 1980, 57(12): 915-924.
19 Yuval-Greenberg S, Merriam E P, Heeger D J. Spontaneous microsaccades reflect shifts in covert attention[J]. Journal of Neuroscience, 2014, 34(41): 13693-13700.
20 钟泽滨. 一种用于车道线识别的图像灰度化方法[J].同济大学学报: 自然科学版, 2019, 47(): 178-182.
Zhong Ze-bin. An image graying method for lane line detection[J]. Journal of Tongji University (Natural Science), 2019,47(Sup.1): 178-182.
21 张文会,秦佳琪,李洪涛,等.考虑拥挤度的常规公交与地铁出行方式选择模型[J].吉林大学学报: 工学版,2021,51(1):200-205.
Zhang Wen-hui, Qin Jia-qi, Li Hong-tao, et al. Travel choice model between bus transit and subway considering crowding degree[J]. Journal of Jilin University (Engineering and Technology Edition), 2021,51(1): 200-205.
22 王海玮,温惠英,刘敏.夜间环境驾驶员精神负荷的生理特性评估与实验[J].吉林大学学报: 工学版, 2017,47(2): 420-428.
Wang Hai-wei, Wen Hui-ying, Liu Min. Experimental evaluation of nighttime driver's physiological characteristics in driving simulator[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(2): 420-428.
23 . 城市道路照明设计标准 [S].
[1] 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015.
[2] 程国柱,盛林,赵浩,冯天军. 基于危险度分析的信号交叉口专用相位设置条件[J]. 吉林大学学报(工学版), 2023, 53(7): 1962-1969.
[3] 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028.
[4] 薛志佳,王召阳,张久鹏,晏长根,许子凯,张英立,黄晓明,马涛. 泥石流作用下道路结构韧性分析及提升[J]. 吉林大学学报(工学版), 2023, 53(6): 1773-1781.
[5] 刘振亮,赵存宝,吴云鹏,马迷娜,马龙双. 数据驱动的公路桥梁网络全寿命抗震韧性评估[J]. 吉林大学学报(工学版), 2023, 53(6): 1695-1701.
[6] 贾洪飞,徐英俊,杨丽丽,王楠. 商品车多式联运联盟成员选择及利益分配[J]. 吉林大学学报(工学版), 2023, 53(4): 1060-1069.
[7] 孙超,尹浩为,汤文蕴,褚昭明. 交通需求估计下的检测器布局和手机数据扩样推断[J]. 吉林大学学报(工学版), 2023, 53(4): 1070-1077.
[8] 常玉林,徐文倩,孙超,张鹏. 车联网环境下考虑遵从程度的混合流量逐日均衡[J]. 吉林大学学报(工学版), 2023, 53(4): 1085-1093.
[9] 姚荣涵,徐文韬,郭伟伟. 基于因子长短期记忆的驾驶人接管行为及意图识别[J]. 吉林大学学报(工学版), 2023, 53(3): 758-771.
[10] 肖雪,李克平,彭博,昌满玮. 基于决策-规划迭代框架的智驾车换道行为建模[J]. 吉林大学学报(工学版), 2023, 53(3): 746-757.
[11] 马敏,胡大伟,舒兰,马壮林. 城市轨道交通网络韧性评估及恢复策略[J]. 吉林大学学报(工学版), 2023, 53(2): 396-404.
[12] 王菁,万峰,董春娇,邵春福. 城市轨道交通站点吸引范围及强度建模[J]. 吉林大学学报(工学版), 2023, 53(2): 439-447.
[13] 黄文博,陈艳艳,柴树山. 手机信息干预下寒冷赛区行人候车决策行为[J]. 吉林大学学报(工学版), 2023, 53(1): 132-140.
[14] 卢辉遒,赵枫,谢波,田彦涛. 冰雪环境下基于神经网络的驾驶人换道意图识别[J]. 吉林大学学报(工学版), 2023, 53(1): 273-284.
[15] 方松,马健霄,李根,沈玲宏,徐楚博. 城市快速路右侧车道移动作业区行车风险分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1786-1791.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!