吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (7): 1851-1861.doi: 10.13229/j.cnki.jdxbgxb.20221178

• 车辆工程·机械工程 • 上一篇    

基于改进麻雀搜索算法的平行行排序问题

张则强(),王灿,刘俊琦,计丹,刘思璐   

  1. 1.西南交通大学 机械工程学院,成都 610031
    2.西南交通大学 轨道交通运维技术与装备四川省重点实验室,成都 610031
  • 收稿日期:2022-09-12 出版日期:2024-07-01 发布日期:2024-08-05
  • 作者简介:张则强(1978-),男,教授,博士.研究方向: 制造系统与智能优化.E-mail:zzq_22@163.com
  • 基金资助:
    国家自然科学基金项目(52375268);教育部人文社会科学研究规划基金项目(23YJA630139);河北省自然科学基金项目(E2024105031);中央高校基本科研业务费专项资金项目(2682023CX009);四川省自然科学基金项目(2024NSFSC1048)

Parallel row ordering problem based on improved sparrow search algorithm

Ze-qiang ZHANG(),Can WANG,Jun-qi LIU,Dan JI,Si-lu LIU   

  1. 1.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China
    2.Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of Sichuan Province,Southwest Jiaotong University,Chengdu 610031,China
  • Received:2022-09-12 Online:2024-07-01 Published:2024-08-05

摘要:

针对平行行排序问题中的物流交互点位置问题,以车间布局为研究背景,提出了具备物流交互点及两行间距的平行行排序问题。以最小物流成本为目标,构建了混合整数规划模型,并运用Lingo求解器对小规模算例进行求解验证。结合问题特性,提出了一种改进的麻雀搜索算法。该算法采用佳点集初始化种群,使种群更具多样性,同时对警惕者数量动态变化,结合PMX交叉算子、连续2-opt算子、插入算子等操作加快求解速度,加入提前终止规则,减少冗余迭代次数。将本文算法与麻雀搜索算法、模拟退火算法、遗传算法等进行对比验证,用于求解25~49不同规模算例,结果表明本文算法在求解质量和求解速度上均具有一定优势。将本文算法应用在某生产车间布局中,对车间布局进行优化,改进后的布局降低了32.40%的物流成本,表明了本文模型及算法的有效性。

关键词: 机械工程, 平行行排序问题, 物流交互点, 麻雀搜索算法

Abstract:

Aiming at the lack of research on the parallel row ordering problem(PROP) of logistics interaction points, the PROP considering logistics interaction point and corridor width was proposed by taking workshop layout as the research background. A mixed-integer programming model with the goal of minimizing logistics costs was constructed. The solutions of a small-scale example were verified by Lingo solver. An improved sparrow search algorithm(ISSA) was proposed by combining the problem characteristics. The good point set was introduced for population initialization to make the population more diverse. The number of vigilants were changed dynamically by proposed algorithm, and algorithm performance was improved by combining operations such as PMX crossover operator, continuous 2-opt operator, and insertion operator. Early termination rule was applied to reduce redundant iterations. By comparing the ISSA with sparrow search algorithm, simulated annealing algorithm and genetic algorithm to solved 25-49 cases, it showed that ISSA has certain advantages in solution quality and solution speed. Finally, the proposed ISSA was applied to a production workshop layout in PROP mode, and the workshop layout was optimized. The results showed that the improved layout reduces the logistics cost by 32.40%, indicating the effectiveness of the proposed model and algorithm.

Key words: mechanical engineering, parallel row ordering problem, logistics interaction point, sparrow search algorithm

中图分类号: 

  • TH181

图1

EPROP示例图"

图2

编码与解码过程"

图3

算法算子"

表1

算法参数设置"

SSA/GAnNpopitermax
25~301 0002 000
33~402 0003 000
42~494 0005 000
SAnInitialTempitermaxFinalTempTempfactor
25~301 0001000.010.99
33~402 0002000.010.99
42~493 0003000.010.99
ISSAnNpopitermaxbyPcpPi
11,15801500.20.80.40.1
25~302003000.20.80.40.1
33~403005000.30.80.40.1
42~495008000.40.80.40.1

表2

小规模算例验证"

算例LingoISSA
objT/sobjavgT/s
S11t=n/24 854.253.774 854.254 854.251.706 9
t=n/36 212.751.626 212.756 212.751.535 7
t=n/46 212.751.626 212.756 212.751.535 7
t=n/56 444.252.326 444.256 444.251.429 9
Am15t=n/24 81215.454 8124 8122.225 2
t=n/35 00620.015 0065 0062.397 8
t=n/45 00620.015 0065 0062.397 8
t=n/56 444.2523.26 444.256 444.251.429 9

表3

求解结果对比"

算例nLingoSAGASSAISSA
N25_01252 662.52 927.52 631.52 777.02 588.0
N25_022521 507.825 028.821 216.322 121.320 912.3
N25_032513 534.515 317.013 422.514 144.513 230.0
N25_042528 184.833 374.327 907.328 867.327 310.3
N25_05259 190.010 252.08 979.09 733.08 954.0
N30_01305 173.55 258.54 560.54 928.04 514.0
N30_023013 590.314 072.812 523.813 709.312 330.8
N30_033028 036.031 093.025 389.528 174.025 172.5
N30_043038 570.343 379.336 729.839 372.835 832.3
N30_053073 588.583 470.567 836.076 264.566 527.5
P33347 879.854 167.345 081.849 515.344 438.8
P63543 532.344 514.338 808.842 771.338 292.3
ste36_01367 837.510 698.57 353.59 184.07 298.0
ste36_0236157 055.0208 048.0139 062.5172 012.5137 466.0
ste36_03367 7693.8124 219.373 969.897 302.372 372.8
ste36_043679 692.3122 244.371 509.384 604.370 150.8
ste36_053677 025.8111 197.377 131.380 350.866 459.8
N40_014072 902.874 304.362 403.369 908.361 193.3
N40_024065 786.070 374.55 623.064 219.556 009.5
N40_034057 071.2560 020.847 951.854 798.846 940.8
N40_044054 572.060 989.048 479.054 807.547 173.5
N40_054076 452.070 595.058 600.564 066.556 901.5
sko_42_014216 796.015 646.014 012.514 920.513 710.5
sko_42_0242155 067.8161 721.8137 287.3147 623.8135 459.3
sko_42_0342120 418.2118 653.3102 656.8110 020.397 690.8
sko_42_044293 065.088 583.076 545.081 462.574 249.5
sko_42_0542169 839.8167 471.8140 673.3151 378.8135 489.3
sko_49_014925 874.524 449.022 077.523 508.521 674.0
sko_49_0249287 104.5280 251.0234 276.5257 728.0225 958.5
sko_49_0349220 384.0214 478.5181 345.5201 103.0176 884.5
sko_49_0449158 653.8151 314.8130 268.3144 403.8125 273.3
sko_49_0549433 603.0418 011.5361 206.5390 612.5349 249.0

图4

SSA与ISSA箱线图比较"

表4

作业单元长度和宽度 (m×m)"

U1U2U3U4U5U6U7U8U9U10

33×

15

30×

15

32×

15

26×

15

14×

15

15×

15

33.5×

15

38×

15

32×

15

20×

15

图5

实例布局图"

表5

物流矩阵 (t·m)"

U1U2U3U4U5U6U7U8U9U10
U1011.34.51.71.501000
U211.301.510.806.51.500
U34.51.501.3102.5200
U41.711.302011.500
U51.50.812000.5000
U60000001200
U716.52.510.510000
U801.521.5020040
U90000000404
U100000000040
1 Salam Q D A, Gualtiero F, Franco F. Analysis of drivers for solving facility layout problems: a literature review[J]. Journal of Industrial Information Integration, 2021, 21: 100187.
2 Mojtaba K, Vahid M D, Sajjad A. A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints[J]. Neural Computing and Applications, 2014, 24(5): 1179-1190.
3 Hosseini-Nasab H, Fereidouni S, Fatemi G S M T, et al. Classification of facility layout problems: a review study[J]. The International Journal of Advanced Manufacturing Technology,2018,94(1-4): 957-977.
4 查珊珊, 郭宇, 黄少华, 等. 不确定需求下的车间设施动态布局[J]. 吉林大学学报:工学版, 2017, 47(6): 1811-1821.
Shan-shan Cha, Guo Yu, Huang Shao-hua, et al. Dynamic facility layout for workshop under uncertain product demands[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1811-1821.
5 Guan C, Zhang Z Q, Zhu L X, et al. Mathematical formulation and a hybrid evolution algorithm for solving an extended row facility layout problem of a dynamic manufacturing system[J]. Robotics and Computer-Integrated Manufacturing, 2022,78: 102379.
6 Liu J Q, Zhang Z Q, Chen F, et al. A novel hybrid immune clonal selection algorithm for the constrained corridor allocation problem[J]. Journal of Intelligent Manufacturing, 2022, 33(4): 953-972.
7 Zhang Z, Gong J, Liu J, et al. A fast two-stage hybrid meta-heuristic algorithm for robust corridor allocation problem[J]. Advanced Engineering Informatics, 2022, 53: 101700.
8 André R S A. A parallel ordering problem in facilities layout[J]. Computers & Operations Research,2013, 40(12): 2930-2939.
9 Hungerländer P. A semidefinite optimization approach to the parallel row ordering problem[R]. Technical Report, Alpen-Adria-Universität Klagenfurt,2015.
10 Maadi M, Javidnia M, Jamshidi R. Two strategies based on meta-heuristic algorithms for parallel row ordering problem[J]. Iranian Journal of Management Studies, 2017, 10(2): 467-498.
11 Yang X H, Cheng W M, Alice E S, et al. An improved model for the parallel row ordering problem[J]. The Journal of the Operational Research Society, 2020, 71(3): 475-490.
12 Gong J H, Zhang Z Q, Liu J Q, et al. Hybrid algorithm of harmony search for dynamic parallel row ordering problem[J]. Journal of Manufacturing Systems, 2021, 58: 159-175.
13 Cravo G L, Amaral A R S. Adaptive iterated local search for the parallel row ordering problem[J]. Expert Systems with Applications, 2022, 208: 118033.
14 计丹, 张则强, 刘俊琦,等. 具有安全间隙及物料装卸点的多行布局问题建模与优化[J]. 计算机集成制造系统, 2023, 29(9): 3074-3085.
Ji Dan, Zhang Ze-qiang, Liu Jun-qi, et al. Modeling and optimization of multi-row layout problem with safety clearance and material handling points[J]. Computer Integrated Manufacturing Systems, 2023,29(9): 3074-3085.
15 Karateke H, Şahin R, Niroomand S. A hybrid Dantzig-Wolfe decomposition algorithm for the multi-floor facility layout problem[J]. Expert Systems with Applications, 2022, 206: 117845.
16 刘俊琦, 张则强, 王沙沙, 等. 考虑不规则物流交互点的过道布置问题建模与优化[J]. 计算机集成制造系统, 2021, 27(4): 1155-1166.
Liu Jun-qi, Zhang Ze-qiang, Wang Sha-sha, et al. Modeling and optimization of corridor problem considering irregular logistics interaction points[J]. Computer Integrated Manufacturing Systems, 2021, 27(4): 1155-1166.
17 董舒豪, 徐志刚, 常艳茹, 等. 考虑物料装卸点与搬运通道的多行设施布局[J]. 计算机集成制造系统, 2021, 27(5): 1269-1280.
Dong Shu-hao, Xu Zhi-gang, Chang Yan-ru, et al. Multi-row facility layout considering material loading/unloading points and handling passages[J]. Computer Integrated Manufacturing Systems, 2021, 27(5): 1269-1280.
18 Xue J K, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
19 吕鑫, 慕晓冬, 张钧,等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.
Xin Lyu, Mu Xiao-dong, Zhang Jun, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720.
20 国强,朱国会,李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报:工学版, 2023,53(2):593-600.
Guo Qiang, Zhu Guo-hui, Li Wan-chen. TDOA/FDOA localization based on chaotic sparrow search algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023,53(2):593-600.
21 段锦, 姚安妮, 王震, 等. 改进的麻雀搜索算法优化无线传感器网络覆盖[J]. 吉林大学学报: 工学版,2024, 54(3): 761-770.
Duan Jin, Yao An-ni, Wang Zhen, et al. An improved sparrow search algorithm optimizes coverage in wireless sensor networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(3): 761-770.
[1] 回丽,金磊,宋万万,周松,安金岚. 转向架用SMA490BW钢不同焊接区域裂纹扩展速率[J]. 吉林大学学报(工学版), 2024, 54(3): 650-656.
[2] 段锦,姚安妮,王震,于林韬. 改进的麻雀搜索算法优化无线传感器网络覆盖[J]. 吉林大学学报(工学版), 2024, 54(3): 761-770.
[3] 段中兴,刘瑞兴,刘冲. 多策略改进麻雀搜索算法优化三维DV-Hop节点定位[J]. 吉林大学学报(工学版), 2024, 54(3): 771-784.
[4] 杨志军,张驰,黄观新. 基于浮动坐标法的刚柔耦合定位平台力学模型[J]. 吉林大学学报(工学版), 2024, 54(2): 385-393.
[5] 石林榕,赵武云. 西北寒旱农区胡麻滚勺式精量穴播器的设计及试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2706-2717.
[6] 柴博森,王广义,闫东,朱国仁,张进,吕恒升. 液力变矩器空化数值模拟及对性能的影响[J]. 吉林大学学报(工学版), 2023, 53(8): 2236-2244.
[7] 陈国辉,徐业银,焦映厚. 考虑偏转的斜齿轮啮合刚度及其振动分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1902-1910.
[8] 陈贵升,罗国焱,李靓雪,黄震,李一. 柴油机颗粒捕集器孔道流场及其高原环境下噪声特性分析[J]. 吉林大学学报(工学版), 2023, 53(7): 1892-1901.
[9] 于立娟,安阳,何佳龙,李国发,王升旭. 机电装备载荷谱外推技术研究进展及发展趋势[J]. 吉林大学学报(工学版), 2023, 53(4): 941-953.
[10] 李胜,朱佳,黄德惠,陈存福,费洪庆,丰伟,胡兴军. 空冷中冷器百叶窗翅片结构参数优化[J]. 吉林大学学报(工学版), 2023, 53(4): 998-1006.
[11] 王建,于威,王斌. 高原状态下甲醇替代率对柴油机燃烧与排放的影响[J]. 吉林大学学报(工学版), 2023, 53(4): 954-963.
[12] 国强,朱国会,李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报(工学版), 2023, 53(2): 593-600.
[13] 柴博森,闫东,王广义,左文杰. 制动工况桃腔偶合器三维涡特征分析及仿真评价[J]. 吉林大学学报(工学版), 2023, 53(11): 3045-3055.
[14] 朱凌,王秋成. 空间几何约束下新能源汽车驱动系统协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1509-1514.
[15] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!