吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 954-963.doi: 10.13229/j.cnki.jdxbgxb.20210813

• 车辆工程·机械工程 • 上一篇    下一篇

高原状态下甲醇替代率对柴油机燃烧与排放的影响

王建1(),于威1,王斌2   

  1. 1.江苏大学 汽车与交通工程学院,江苏 镇江 212000
    2.一汽解放汽车有限公司 无锡柴油机厂,江苏 无锡 214026
  • 收稿日期:2021-08-22 出版日期:2023-04-01 发布日期:2023-04-20
  • 作者简介:王建(1978?),男,副教授,博士.研究方向:中小功率内燃机工作过程与性能优化.E-mail:wangjian@ujs.edu.cn
  • 基金资助:
    江苏省高校优势学科建设工程项目(苏证办发[2015]);江苏重点研发计划项目(BE201518)

Effects of methanol substitution percent on combustion and emission of diesel engines under plateau condition

Jian WANG1(),Wei YU1,Bin WANG2   

  1. 1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212000,China
    2.Wuxi Diesel Engine Factory,FAW Jiefang Automobile Co. ,Ltd. ,Wuxi 214026,China
  • Received:2021-08-22 Online:2023-04-01 Published:2023-04-20

摘要:

模拟了10 m、700 m及2400 m海拔压力,通过试验探究不同海拔对柴油/甲醇二元燃料发动机缸内燃烧与排放的影响,试验工况为1800 r/min下25%、50%和75%负荷。结果表明:发动机在25%负荷下,2400 m海拔及40%甲醇替代率时会导致缸内出现失火,使峰值压力降低,滞燃期延长,扩散燃烧缩短;在50%与75%负荷下,海拔高度与甲醇替代率的增加使缸内峰值压力明显上升,各工况燃烧持续期随着甲醇替代率的增加而缩短,随海拔的增加而延长。相比于10 m海拔纯柴油模式,在各海拔及甲醇替代率下,发动机的滞燃期最大延长27.01%,最大缩短28.99%;燃烧持续期最大延长22.79%,最大缩短43.20%;CA50前移8.55%~21.82%,缸内平均燃烧温度上升1.45%~23.83%。在50%和75%负荷下,发动机有效热效率随海拔的升高而降低、随甲醇替代率的增加而升高;在25%负荷下,呈现出更复杂的变化规律。污染物排放中,随着甲醇替代率的增加,同一负荷下NO x 与烟度同时降低,但HC与CO同时增加;而随着海拔增加,常规污染物排放几乎都呈上升趋势。本研究内容可以为高原地区柴油/甲醇二元燃料发动机缸内燃烧与排放提供参考价值。

关键词: 动力机械工程, 柴油/甲醇二元燃料, 海拔高度, 燃烧, 排放

Abstract:

The altitude pressure of 10 m, 700 m and 2400 m were simulated to explore the combustion and emission of diesel-methanol dual fuel engine in different altitude. The test conditions were 25%, 50% and 75% load at 1800 r/min. The results demonstrated that under 25% load, misfire emerge in the cylinder at 40% methanol substitution percentage (MSP) and 2400 m, which lead to the peak pressure decrease in the cylinder, the combustion delay period will be prolonged, and the diffusion combustion will be shortened. Under 50% and 75% loads, the increasing of altitude and MSP result in peak pressure increasing in the cylinder. The combustion duration decreases with the increasing of MSP and increases with the increasing of altitude in all conditions. Compared with the pure diesel mode in 10 m, under different altitudes and MSP, the maximum ignition delay period of the engine is extended by 27.01% and the minimum is shortened by 28.99%. The maximum combustion duration is shortened by 43.20% and extended by 22.79%, the CA50 moves forward by 8.55% ~ 21.82%, and the in-cylinder combustion temperature rises by 1.45% ~ 23.83%. The brake thermal efficiency of the engine decreases with the increase of altitude and increases with the increase of MSP at 50% and 75% loads. However, brake thermal efficiency presents a more complex variation rule under 25% load. Among the pollutant emission, with the increase of MSP, NO x and Soot decreased simultaneously, HC and CO increased simultaneously under the same load. With the increase of altitude, the emission almost all showed an upward trend. The research can provide reference for the in-cylinder combustion and emission of diesel/methanol dual fuel engine in the plateau area.

Key words: power mechanical engineering, diesel/methanol dual fuel, altitude, combustion, emissions

中图分类号: 

  • TK428.9

表1

发动机主要技术参数"

项目参数
型式直列四缸,四冲程,增压中冷
缸径×行程/(mm×mm)95×115
压缩比18.5
排量/L3.26
额定功率/kW75(2400 r·min-1
最大转矩/(N?m)320(1800 r·min-1

表2

测量参数量程及精度"

测量参数范围精度
转速/(r?min-10~6000±1
扭矩/(N·m)0~400±0.05(F.S.)
缸内压力/MPa0~25±0.05%(F.S.)
柴油耗/(kg?h-10~40±0. 4%(F.S.)
甲醇耗/(kg?h-10~40±0. 4%(F.S.)
排气温度/℃0~800±1
进排气压力/kPa0~40±0.5%(F.S.)

表3

试验方案与试验条件"

转速/(r·min-1扭矩/(N·m) (负荷率/%)海拔高度/m大气压力/kPa甲醇替代率/%
180079 (25)10100.30/10/20/30/40/50
70093.20/10/20/30/40/50
240075.60/10/20/30/40
158 (50)10100.30/10/20/30/40/50
70093.20/10/20/30/40/50
240075.60/10/20/30/40
237 (75)10100.30/10/20/30/40
70093.20/10/20/30/40
240075.60/10/20/30

图1

不同海拔与甲醇替代率对最大燃烧压力的影响"

图2

不同海拔与甲醇替代率对滞燃期、燃烧持续期、CA50的影响"

图3

不同海拔与甲醇替代率对缸内平均燃烧温度的影响"

图4

不同海拔与甲醇替代率对有效热效率的影响"

图5

不同海拔与甲醇替代率对NO x 排放的影响"

图6

不同海拔与甲醇替代率对烟度的影响"

图7

不同海拔与甲醇替代率对CO排放的影响"

图8

不同海拔与甲醇替代率对HC排放的影响"

1 He C, Ge Y S, Ma C C, et al. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes[J]. Science of The Total Environment, 2011, 409(17): 3138-3143.
2 Yu L X, Ge Y S, Tan J W, et al. Experimental investigation of the impact of biodiesel on the combustion and emission characteristics of a heavy duty diesel engine at various altitudes[J]. Fuel, 2014, 115: 220-226.
3 Ramos Á, García-Contreras R, Armas O. Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels[J]. Applied Energy, 2016, 182: 507-517.
4 Shannak B A, Alhasan M. Effect of atmospheric altitude on engine performance[J]. Forschung im Ingenieurwesen, 2002, 67(4): 157-160.
5 Perez P L, Boehman A L. Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions[J]. Aerospace Science and Technology, 2010, 14(2): 83-94.
6 Wang X, Ge Y S, Yu L X, et al. Comparison of combustion characteristics and brake thermal efficiency of a heavy-duty diesel engine fueled with diesel and biodiesel at high altitude[J]. Fuel, 2013, 107: 852-858.
7 . 轻型汽车污染物排放限值及测量方法(中国第六阶段) [S].
8 林学东, 江涛, 许涛, 等. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报: 工学版, 2018, 48(5): 1436-1443.
Lin Xue-dong, Jiang Tao, Xu Tao, et al. Control strategy of high pressure pump in starting condition of high pressure common rail diesel engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1436-1443.
9 刘忠长, 孙士杰, 田径, 等. 瞬态工况下喷油参数对柴油机排放及燃烧特性的影响[J]. 吉林大学学报: 工学版, 2014, 44(6): 1639-1646.
Liu Zhong-chang, Sun Shi-jie, Tian Jing, et al. Influences of fuel injection parameters on emissions and combustion of diesel engine under transient conditions[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1639-1646.
10 刘忠长, 腾鹏坤, 田径, 等. 二级增压柴油机旁通阀调节特性[J]. 吉林大学学报: 工学版, 2017, 47(3): 796-803.
Liu Zhong-chang, Teng Peng-kun, Tian Jing, et al. Regulation characteristics of bypass valve of two stage turbocharged diesel engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 796-803.
11 Wang X, Ge Y, Yu L, et al. Effects of altitude on the thermal efficiency of a heavy-duty diesel engine[J]. Energy, 2013, 59: 543-548.
12 徐华平, 石岩峰, 张旭, 等. 某高原增压柴油机喷油提前角优化及性能研究[J]. 内燃机工程, 2015, 36(6): 118-123.
Xu Hua-ping, Shi Yan-feng, Zhang Xu, et al. Optimization of injection advance angle and performance research of turbocharged diesel engine at high altitude[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(6): 118-123.
13 刘瑞林,刘宏威,秦德. 涡轮增压柴油机高海拔(低气压)性能试验研究[J]. 内燃机学报, 2003, 20(3): 213-216.
Liu Rui-lin, Liu Hong-wei, Qin De. An experimental study on performance of turbocharged diesel engines at high altitude(low air pressure)[J]. Transactions of CSICE, 2003, 20(3): 213-216.
14 郭亮, 杨文昭, 王云开, 等. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报: 工学版, 2017, 47(6): 1767-1774.
Guo Liang, Yang Wen-zhao, Wang Yun-kai, et al. Effect of exhaust gas recirculation on internal combustion engine fueled with butanol/diesel blend[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1767-1774.
15 谭满志, 金文华, 张淑华, 等. 电控高压共轨柴油机燃用生物柴油的排放特性[J]. 吉林大学学报: 工学版, 2010, 40(3): 619-624.
Tan Man-zhi, Jin Wen-hua, Zhang Shu-hua, et al. Investigation on exhaust emission characteristics of electronically controlled high pressure common rail diesel fueled with biodiesel[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 619-624.
16 Wei L, Yao C, Han G, et al. Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine[J]. Energy, 2016, 95: 223-232.
17 张学敏, 李芳, 葛蕴珊, 等. 甲醇柴油与生物柴油醛酮类排放物的研究[J]. 农业工程学报, 2012, 28(8): 247-251.
Zhang Xue-min, Li Fang, Ge Yun-shan, et al. Research on carbonyl compound emission of methanol-diesel fuel and bio-diesel fuel[J]. Transactions of The Chinese Society of Agricultural Engineering, 2012, 28(8): 247-251.
18 Fan C Y, Song C L, Lv G, et al. Evaluation of carbonyl compound emissions from a non-road machinery diesel engine fueled with a methanol/diesel blend[J]. Applied Thermal Engineering, 2018, 129: 1382-1391.
19 Wu H W, Fan C M, He J Y, et al. Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature[J]. Energy, 2017, 141: 1819-1828.
20 Kumar S, Cho J H, Park J, et al. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 46-72.
21 Imran A, Varman M, Masjuki H H, et al. Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 739-751.
22 Pan W, Yao C D, Han G P, et al. The impact of intake air temperature on performance and exhaust emissions of a diesel methanol dual fuel engine[J]. Fuel, 2015, 162: 101-110.
23 Geng P, Yao C D, Wang Q G, et al. Effect of DMDF on the PM emission from a turbo-charged diesel engine with DDOC and DPOC[J]. Applied Energy, 2015, 148: 449-455.
24 Li Y P, Jia M, Liu Y D, et al. Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine[J]. Applied Energy, 2013, 106: 184-197.
25 刘军恒, 姚春德, 魏立江, 等. 甲醇柴油比对二元燃料燃烧与排放特性的影响[J]. 工程热物理学报, 2014, 35(10): 2068-2072.
Liu Jun-heng, Yao Chun-de, Wei Li-jiang, et al. Effect of methanol and diesel fuel ratio on combustion and emission characteristic of a dual fuel engine[J]. Journal of Engineering Thermophysics, 2014, 35(10): 2068-2072.
26 Quan G W, Li J W, Wang P, et al. Investigation of operating range in a methanol fumigated diesel engine[J]. Fuel, 2015, 140: 164-170.
27 Wang Q G, Wang B, Yao C D, et al. Study on cyclic variability of dual fuel combustion in a methanol fumigated diesel engine[J]. Fuel, 2016, 164: 99-109.
28 Xu H J, Yao C D, Xu G L. Chemical kinetic mechanism and a skeletal model for oxidation of n-heptane/methanol fuel blends[J]. Fuel, 2012, 93: 625-631.
29 Ghazikhani M, Feyz M E, Mahian O, et al. Effects of altitude on the soot emission and fuel consumption of a light-duty diesel engine[J]. Transport, 2013, 28(2): 130-139.
30 Chunde Y, Hu J T, Peilin G, et al. Effects of injection pressure on ignition and combustion characteristics of diesel in a premixed methanol/air mixture atmosphere in a constant volume combustion chamber[J]. Fuel, 2017, 206: 593-602.
31 余林啸, 葛蕴珊, 谭建伟, 等. 重型柴油机在不同海拔地区的燃烧与排放特性[J]. 内燃机学报, 2013, 31(6): 507-512.
Yu Lin-xiao, Ge Yun-shan, Tan Jian-wei, et al. Combustion and emission characteristic of a heavy-duty diesel engine at different altitudes[J]. Transactions of CSICE, 2013, 31(6): 507-512.
[1] 秦静,郑德,裴毅强,吕永,苏庆鹏,王膺博. 基于PSO-GPR的发动机性能与排放预测方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1489-1498.
[2] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[3] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[4] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[5] 苏岩,王博,刘宇,解方喜,胡云峰,段加全. 柴油喷射时刻及汽油比例对均质混合气引燃模式排放性能的影响[J]. 吉林大学学报(工学版), 2022, 52(1): 37-45.
[6] 陈涛,秦静,赵华,苏庆鹏,吕永,钟凯,王膺博,裴毅强. 基于模型群预测法对汽油机稳态原排的预测[J]. 吉林大学学报(工学版), 2021, 51(5): 1565-1574.
[7] 成耀荣,杨谦,郑国华. 考虑碳排放的大型制造企业甩挂运输牵引车调度优化[J]. 吉林大学学报(工学版), 2021, 51(3): 893-899.
[8] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[9] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[10] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[11] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[12] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[13] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[14] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[15] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!