吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (7): 1892-1901.doi: 10.13229/j.cnki.jdxbgxb.20211038

• 车辆工程·机械工程 • 上一篇    

柴油机颗粒捕集器孔道流场及其高原环境下噪声特性分析

陈贵升1,2(),罗国焱1,2,李靓雪1,2,黄震1,2(),李一3   

  1. 1.昆明理工大学 交通工程学院,昆明 650500
    2.昆明理工大学 云南省内燃机重点实验室,昆明 650500
    3.云南菲尔特环保科技股份有限公司,昆明 650300
  • 收稿日期:2021-10-11 出版日期:2023-07-01 发布日期:2023-07-20
  • 通讯作者: 黄震 E-mail:cgs_yly@163.com;1329627964@qq.com
  • 作者简介:陈贵升(1979-),男,教授,博士.研究方向:内燃机排放与控制.E-mail: cgs_yly@163.com
  • 基金资助:
    国家自然科学基金项目(51866004)

Analysis of diesel particulate filter channel flow field and its noise characteristics in plateau environment

Gui-sheng CHEN1,2(),Guo-yan LUO1,2,Liang-xue LI1,2,Zhen HUANG1,2(),Yi LI3   

  1. 1.College of Transportation Engineering,Kunming University of Science and Technology,Kunming 650500,China
    2.Yunnan Key Laboratory of Internal Combustion Engine,Kunming University of Science and Technology,Kunming 650500,China
    3.Yunnan Filter Environment Protection Science & Technology Corporation Limited,Kunming 650300,China
  • Received:2021-10-11 Online:2023-07-01 Published:2023-07-20
  • Contact: Zhen HUANG E-mail:cgs_yly@163.com;1329627964@qq.com

摘要:

基于CFD软件搭建柴油机颗粒捕集器(DPF)三维模型,研究了碳烟及灰分分布形式对非对称结构DPF孔道气流运动的影响;通过建立一维热力学整机模型研究高原环境下DPF载体尺寸、壁厚、进/出口孔径比对其噪声特性的影响。结果表明:DPF进气孔道流速沿始端轴向先增大后减小,从中心线始端沿壁面径向位置降低。高原环境下,载体直径比载体长度对噪声的影响更为显著;载体直径190 mm比直径170 mm对噪声衰减效果更好,达3 dB以上;进/出口孔径比为1.1时,DPF排气端噪声最低,且噪声衰减幅度随碳载量(0~8 g/L)增加而变大,降幅约3 dB。

关键词: 动力机械工程, 柴油机, 计算流体动力学(CFD), 颗粒捕集器, 高原环境, 噪声特性, 孔道流场, 灰分分布系数

Abstract:

A 3D model of Diesel Particulate Filter(DPF) was established by CFD software, the influence of soot and ash distribution on the airflow movement of dissymmetric DPF ducts was studied. A one-dimensional thermodynamic model of engine was used to analyze influence of the DPF carries size, wall thickness, and the inlet/outlet aperture ratio on exhaust noise under plateau environment. The results showed that: the flow velocity of DPF inlet port has been increases first and then decreases axially from the beginning end. The flow velocity of the DPF inlet port has been decreases radially from the center. The carrier diameter has significant impact on noise than the length under plateau environment. The carrier diameter of 190 mm has a better noise attenuation effect than the diameter of 170 mm, reaching more than 3 dB. The inlet/outlet aperture ratio is 1.1, the end of DPF noise is the lowest, the attenuation amplitude increases with the increase in carbon loading (0~8 g/L), the noise attenuation effect is better more than 3 dB.

Key words: power machinery and engineering, diesel engine, computational fluid dynamics(CFD), diesel particulate filter(DPF), plateau environment, noise characteristics, channel flow field, ash distribution coefficient

中图分类号: 

  • TK442

表1

发动机主要技术参数"

参 数具体数值
发动机机型直列4缸四冲程
燃油系统电控高压共轨
进气形式增压中冷
压缩比16.6
排量/L2.977
额定功率/kW100/(3000 r·min-1
最大转矩/(N·m)381/(1600~2600 r·min-1

表2

DPF技术参数"

参 数具体数值
材质碳化硅
直径×长度/mm×mm170×200
配比1.5
孔密度/CPSI300
孔隙率/%43
孔径分布/μm5~32
壁厚/mm0.2525

图1

DPF排气噪声图"

图2

DPF微观孔道模型"

图3

DPF孔道网格模型"

图4

DPF进/排气孔道中心线无量纲速度验证"

图5

DPF噪声试验值与模拟值对比"

图6

噪声频谱图"

图7

进气孔道流速变化图"

图8

排气孔道流速变化图"

图9

DPF进口孔道中心线速度变化"

图10

DPF出口孔道中心线速度变化"

图11

DPF进口孔道流速沿径向位置的变化"

图12

DPF出口孔道流速沿径向位置的变化"

图13

DPF的插入损失"

图14

载体尺寸对DPF噪声的影响"

图15

壁厚对DPF噪声的影响"

图16

进/出口孔径比对DPF噪声的影响"

1 Lee S H, Kwak J H, Lee S Y, et al. On-road chasing and laboratory measurements of exhaust particle emissions of diesel vehicles equipped with aftertreatment technologies (DPF, urea-SCR) [J]. International Journal of Automotive Technology, 2015, 16(4): 551-559.
2 Yamamoto K, Sakai T. Simulation of continuously regenerating trap with catalyzed DPF[J]. Catalysis Today, 2015, 242: 357-362.
3 李志军, 侯普辉, 焦鹏昊, 等. DPF孔道内流场及微粒沉积特性的数值模拟[J]. 天津大学学报:自然科学与工程技术版,2015, 48(10): 914-920.
Li Zhi-jun, Hou Pu-hui, Jiao Peng-hao, et al. Numerical Simulation for Flow and Soot A- ccumulation in the Channels of Diesel Particulate Filter[J] Journal of Tianjin University(Science and Technology), 2015, 48(10): 914-920.
4 李志军, 王楠, 张立强, 等.柴油机微粒捕集器非对称孔道内流场和压降特性模拟[J]. 吉林大学学报:工学版, 2016, 46(6): 1892-1899.
Li Zhi-jun, Wang Nan, Zhang Li-qiang, et al. Numerical simulation for flow and pressure drop characteristics in asymmetrical channels of diesel particulate filter[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(6): 1892-1899.
5 李冰, 李靓雪, 陈贵升, 等. 柴油机DPF孔道气相流场及噪声特性分析[J]. 内燃机学报, 2021, 39(3): 265-272.
Li Bing, Li Liang-xue, Chen Gui-sheng, et al. Analysis of gas phase flow in channels and its noise characteristics for a diesel engine DPF[J]. Transactions of CSICE, 2021, 39(3): 265-272.
6 Hua X, Herrin D W, Wu T W, et al. Simulation of diesel particulate filters in large exhaust systems[J]. Applied Acoustics, 2013, 74(12): 1326-1332.
7 Gao W, Feng L. FEM analysis on acoustic performance of wall flow diesel particulate filters[J]. Chinese Journal of Mechanical Engineering, 2011, 24(4): 701-706.
8 Montenegro G, Onorati A, Torre D, et al. The 3D cell approach for the acoustic modeling of after-treatment devices[J]. SAE International Journal of Engines, 2011, 4(2): 2519-2530.
9 陈贵升, 周群林, 马龙杰, 等. 柴油机DPF压降及噪声特性分析[J]. 汽车工程, 2020, 42(7): 874-881.
Chen Gui-sheng, Zhou Qun-lin, Ma Long-jie, et al. Analysis of DPF pressure drop and noise characteristics of diesel engine[J]. Automotive Engineering, 2020, 42(7): 874-881.
10 饶均. 汽车排气系统流动特性与声学特性研究[D]. 重庆: 重庆交通大学航运与船舶工程学院, 2016.
Rao Jun. Study on flow performance and acoustic performance of automobile exhaust system[D]. Chongqing: College of Shipping and Marine Engineering,Chongqing Jiaotong University, 2016.
11 邓兆祥, 赵海军, 赵世举, 等. 穿孔管消声单元气流再生噪声产生机理[J]. 内燃机学报, 2009, 27(5):452-457.
Deng Zhao-xiang, Zhao Hai-jun, Zhao Shi-ju, et al. Producing mechanism of flow noise generation from perforated duct muffler element[J]. Transactions of CSICE, 2009, 27(5): 452-457.
12 陈贵升, 吕誉, 沈颖刚, 等. 高原环境下增压柴油机耦合DPF的性能仿真[J]. 内燃机学报, 2019, 37(6): 505-513.
Chen Gui-sheng, Lv Yu, Shen Ying-gang, et al. Simulation study of performances in plateau environment on a turbocharged diesel engine coupled with DPF[J]. Transactions of CSICE, 2019, 37(6): 505-513.
13 Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193-208.
14 Zhang X G, Tennison P, Ruona W. 3D numerical study of pressure Loss characteristics and filtration efficiency through a frontal unplugged DPF[J]. SAE International Journal of Fuels & Lubricants, 2010, 3(1): 177-193.
[1] 王建,于威,王斌. 高原状态下甲醇替代率对柴油机燃烧与排放的影响[J]. 吉林大学学报(工学版), 2023, 53(4): 954-963.
[2] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[3] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[4] 高文志,王彦军,王欣伟,张攀,李勇,董阳. 基于卷积神经网络的柴油机失火故障实时诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 417-424.
[5] 汤东,韩宇彬,华伦,潘金冲,刘胜. 润滑油灰分对直喷汽油机颗粒捕集器性能影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2501-2507.
[6] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[7] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[8] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[9] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[10] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[11] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[12] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[13] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[14] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[15] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!