吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (4): 941-953.doi: 10.13229/j.cnki.jdxbgxb.20211226

• 综述 •    下一篇

机电装备载荷谱外推技术研究进展及发展趋势

于立娟1,2(),安阳1,2,何佳龙1,2(),李国发1,2,王升旭1,2   

  1. 1.吉林大学 数控装备可靠性教育部重点实验室,长春 130022
    2.吉林大学 机械与航空航天工程学院,长春 130022
  • 收稿日期:2021-09-10 出版日期:2023-04-01 发布日期:2023-04-20
  • 通讯作者: 何佳龙 E-mail:tallyu@163.com;hejl@jlu.edu.cn
  • 作者简介:于立娟(1972-),女,教授,博士.研究方向:数控制造装备可靠性理论与技术,力学试验技术,直线电机控制技术.E-mail:tallyu@163.com
  • 基金资助:
    国家自然科学基金项目(51905209);吉林省科技发展计划项目(20210201055GX);吉林省青年托举人才工程项目(QT202114)

Research progress and development trend of extrapolation method in electromechanical equipment load spectrum

Li-juan YU1,2(),Yang AN1,2,Jia-long HE1,2(),Guo-fa LI1,2,Sheng-xu WANG1,2   

  1. 1.Key Laboratory of CNC Equipment Reliability,Ministry of Education,Jilin University,Changchun 130022,China
    2.School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
  • Received:2021-09-10 Online:2023-04-01 Published:2023-04-20
  • Contact: Jia-long HE E-mail:tallyu@163.com;hejl@jlu.edu.cn

摘要:

在梳理、分析国内外机电装备载荷谱外推最新研究成果的基础上,针对机电装备运行过程中的载荷形式及载荷特性,综述了时域载荷外推、雨流域载荷外推(参数雨流外推、非参数雨流外推和雨流矩阵外推)和分位点外推等载荷外推技术的研究进展和对比分析。在大数据的时代背景下,讨论了机电装备载荷谱外推技术的潜在方向与发展趋势。

关键词: 机械工程, 机电装备, 载荷谱, 载荷外推, 时域外推, 雨流域外推

Abstract:

On the basis of combing and analyzing the latest research results of the extrapolation of the load spectrum of electromechanical equipment at home and abroad, this paper summarizes the research progress and comparative analysis of load extrapolation key technologies: time-domain load extrapolation, rainflow load extrapolation (parametric rainflow, non-parametric rainflow, and rainflow matrix extrapolations), and quantile extrapolation, in view of the load form and load characteristics of the electromechanical equipment during operation. In the context of the era of big data, the potential direction and development trend of the load spectrum extrapolation method in electromechanical equipment are discussed.

Key words: mechanical engineering, electromechanical equipment, load spectrum, load extrapolation, time domain load extrapolation, rainflow load extrapolation

中图分类号: 

  • TB114.3

图1

载荷谱编制的主要流程和关键技术"

图2

载荷谱相关论文的数量统计"

图3

载荷谱编制中外推方法的分类"

图4

BMM、POT、MIS模型原理"

图5

基于BMM-GEV的极值外推方法"

图6

基于GRA-POT模型的外推方法"

图7

不同M值的拟合结果"

图8

基于载荷扩展的非参数雨流外推方法流程图"

图9

分位点外推优化流程图"

表1

外推方法对比"

方 法优 点缺 点适用范围
基于BMM模型的时域外推在样本容量较大时,无需选择阈值,使用简单方便会忽略部分有效极值点适用于载荷具有周期性质的场合,例如液压泵32、数控机床恒速切削状态20、风力机39
基于POT模型的时域外推在样本容量比较小时,可完成稳定性高的要求对于合适的阈值选择困难适用于载荷相对平稳的场合,例如液压泵3、数控机床恒速切削状态1、风力机46、伺服刀架47
基于MIS模型的时域外推估计结果对阈值的敏感度低,结果稳定小样本时,较POT模型极值点选取得少,阈值选择困难适用于载荷相对平稳的场合,常用于对风荷载2951、车辆荷载13进行极值估计等
参数雨流外推同时考虑了样本均幅值的影响,适用于信号平稳、雨流矩阵形状简单情况依赖于样本数据的分布,在选择参数估计方法时存在主观性适用于平稳随机历程,雨流矩阵较为简单,其中可以用混合分布拟合复杂呈多峰分布的载荷,例如汽车1453、数控机床16?18
非参数雨流外推无需假设样本数据服从某种分布,可突破对母体分布的依赖需要大量的样本数据,核函数和带宽的选择对结果有影响适用于随机性高,雨流矩阵形状复杂的载荷,例如工程机械106162、高速列车58
雨流矩阵外推能预测短期载荷时间历程内没有出现的大载荷,能完成载荷幅值和频次上的双向外推在利用穿级计数法时上、下阈值的选择存在难度;计算程序相对繁琐适用于需要预测对疲劳损伤贡献大的载荷的场合,例如工程机械3763、高速列车664
分位点外推可综合考虑不同工况的载荷差异需要与其他载荷外推方法联合使用适用于需要考虑载荷差异性的场合,例如工程机械13、高速列车6
1 He J L, Zhao X Y, Li G F, et al. Time domain load extrapolation method for CNC machine tools based on GRA-POT model[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(9-12): 3799-3812.
2 He X F, Li T, Li Y H, et al. Developing an accelerated flight load spectrum based on the n(z) - N curves of a fleet[J]. International Journal of Fatigue, 2018, 117: 246-256.
3 Sun X, Shi J, Wang S P, et al. Design of load spectrum for hydraulic pumps based on extreme value theory[C]∥IEEE Conference on Industrial Electronics and Applications(ICIEA),Siem Reap, Cambodia, 2017: 1321-1326.
4 陈道云, 孙守光, 李强. 高速列车载荷谱推断及扩展方法研究[J]. 机械工程学报, 2018, 54(10): 151-155.
Chen Dao-yun, Sun Shou-guang, Li Qiang. Study on deduction and extend of high-speed train load spectrum[J]. Journal of Mechanical Engineering, 2018, 54(10): 151-155.
5 金新灿, 张世强. 基于高速轮轴实测载荷的非参数拟合外推研究[J]. 北京交通大学学报, 2019, 43(6): 97-103, 130.
Jin Xin-can, Zhang Shi-qiang. Non-parametric fitting extrapolation based on measured load of high-speed axle[J]. Journal of Beijing Jiaotong University, 2019, 43(6): 97-103, 130.
6 薛海, 李强, 胡伟钢, 等. 重载货车车钩疲劳试验载荷谱的编制方法[J]. 中国铁道科学, 2017, 38(2): 105-110.
Xue Hai, Li Qiang, Hu Wei-gang, et al. Compilation method for fatigue test load spectrum of coupler on heavy haul freight car[J]. China Railway Science, 2017, 38(2): 105-110.
7 Lu Y H, Zheng H Y, Zeng J, et al. Fatigue life reliability evaluation in a high-speed train bogie frame using accelerated life and numerical test[J]. Reliability Engineering and System Safety, 2019, 188(8): 221-232.
8 宫海彬, 苏建, 王兴宇, 等. 基于极值外推的高速列车齿轮传动装置载荷谱编制[J]. 吉林大学学报: 工学版, 2014, 44(5): 1264-1269.
Gong Hai-bin, Su Jian, Wang Xing-yu, et al. Compiling method of load spectrum of high-speed train gear drive system base on extreme value extrapolation[J]. Journal of Jilin University (Engineering and Technology Edition) 2014, 44(5): 1264-1269.
9 Chen D Y, Xiao Q, Mou M H, et al. Study on establishment of standardized load spectrum on bogie frames of high-speed trains[J]. Acta Mechanica Sinica, 2019, 35(4): 812-827.
10 高天宇, 李焕良, 郑铮, 等. 基于雨流频次外推的ZLK50型装载机液压缸载荷谱编制[J]. 机械强度, 2017, 39(4): 951-956.
Gao Tian-yu, Li Huang-liang, Zheng Zheng, et al. Compiling method of load spectrum of ZLK50 type loader hydraulic cylinder based on rain flow frequency extrapolation[J]. Journal of Mechanical Strength, 2017, 39(4): 951-956.
11 杜敏杰, 黄雪, 杨前进, 等. 基于雨流频次外推的液压挖掘机斗杆程序载荷谱编制[J]. 机械设计, 2019, 36(6): 87-93.
Du Min-jie, Huang Xue, Yang Qian-jin, et al. Program load-spectrum compiling of the hydraulic excavator's bucket rod based on the rain-flow frequency extrapolation[J]. Journal of Machine Design, 2019, 36(6): 87-93.
12 陈鸿彬. 挖掘机液压系统压力载荷谱编制方法研究[D].长春: 吉林大学机械与航空航天工程学院, 2017.
Chen Hong-bin. Research on the load spectrum compiling of the pressure in the hydraulic system of an excavator[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2017.
13 冯海月, 伊廷华, 陈斌. 采用广义Pareto分布进行车辆荷载效应极值估计的研究[J]. 振动与冲击, 2015, 34(15): 7-11, 22.
Feng Hai-yue, Yi Ting-hua, Chen Bin. Extreme estimation for vehicle load effect based on generalized pareto distribution[J]. Journal of Vibration and Shock, 2015, 34(15): 7-11, 22.
14 Geng S L, Liu X T, Yang X B, et al. Load spectrum for automotive wheels hub based on mixed probability distribution model[J]. Journal of Automobile Engineering, 2019, 233(14): 3707-3720.
15 Wang S C, Liu X T, Jiang C J, et al. Prediction and evaluation of fatigue life for mechanical components considering anelasticity‐based load spectrum[J]. Fatigue & Fracture of Engineering Materials & Structures,2020, 44(1): 129-140.
16 Chen C H, Yang Z J, He J L, et al. Load spectrum generation of machining center based on rainflow counting method[J]. Journal of Vibroengineering 2017, 19(8): 5767-5779.
17 He J L, Wang S X, Li G F, et al. Compilation of NC lathe dynamic cutting force spectrum based on two-dimensional mixture models[J]. International Journal of Advanced Manufacturing Technology, 2018, 98(1-4): 251-262.
18 李圳. 基于混合分布的数控刀架载荷谱编制方法及应用研究[D].长春: 吉林大学机械与航空航天工程学院, 2017.
Li Zhen. Research on compilation method and application of load spectrum of NC turret based on mixed distribution[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2017.
19 张建成. 基于核函数的数控车床载荷谱编制关键技术研究[D]. 长春:吉林大学机械与航空航天工程学院, 2019.
Zhang Jian-cheng. Research on key technologies for compiling load spectrum of CNC lathe based on kernel function[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2019.
20 Wang S X, Li G F, Yang H J, et al. Research on extreme value distribution of cutting force in CNC lathe based on generalized extreme value distribution[C]∥The 4th International Conference on System Reliability and Safety (ICSRS), Rome, Italy, 2019: 198-202.
21 张英爽. 装载机传动系载荷谱的测取与应用研究[D].长春: 吉林大学机械与航空航天工程学院, 2014.
Zhang Ying-shuang. Research on the load spectra acquisition and application of loader powertrain[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2014.
22 Edwards P R, Darts J. Standardised fatigue loading sequences for helicopter rotors (helix and felix) part 2. final definition of helix and felix[R]. Royal Aircraft Establishment Farnborough, United Kingdom, 1984.
23 Tenhave A A. Wisper and Wisperx: final definition of two standardised fatigue loading sequences for wind turbine blades[C]∥NASA Report, 1992: No. 30872.
24 Klätschke H. Standardized load sequences for car powertrains with automatic gears-car loading standard-CARLOS PTA[R]. Fraunhofer-Institut für Betriebsfestigkeit (LBF),Darmstadt,Germany, 2002.
25 Grubisic V, Fischer G. Automotive wheels, method and procedure for optimal design and testing[J]. SAE Transactions 1983, 92: 508-525.
26 李研. 轮式装载机载荷谱编制中非参数外推方法研究[D]. 长春:吉林大学机械与航空航天工程学院, 2016.
Li Yan. Research on non-parametric extrapolation method in compiling load spectra of wheel loader[D]. Changchun: School of Mechanical and Aerospace Engineering, Jilin University, 2016.
27 Wang J X, Liu Y, Zeng X, et al. Selection method for kernel function in nonparametric extrapolation based on multicriteria decision-making technology[J]. Mathematical Problems in Engineering, 2013(1): 1-11.
28 Johannesson P, Thomas J J. Extrapolation of rainflow matrices[J]. Extremes,2001, 4(3): 241-262.
29 Cook N J. Towards better estimation of extreme winds[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1982, 9(3): 295-323.
30 Johannesson P. Extrapolation of load histories and spectra[J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(3): 209-217.
31 Jenkinson A F. The frequency distribution of the annual maximum (or minimum) values of meteorological elements[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 81(348):158-171.
32 Carboni M, Cerrini A, Johannesson P, et al. Load spectra analysis and reconstruction for hydraulic pump components[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 31(3/4): 251-261.
33 Kowalewski J. Beschreibung regelloser vorgänge[J]. VDI Fortschrittsberichte, 1969, 5(7):7-27.
34 Nagode M, Fajdiga M. A general multi-modal probability density function suitable for the rainflow ranges of stationary random processes[J]. International Journal of Fatigue, 1998, 20(3): 211-223.
35 Nagode M, Klemenc J, Fajdiga M. Parametric modelling and scatter prediction of rainflow matrices[J]. International Journal of Fatigue, 2001, 23(6): 525-532.
36 Dressler K, Gründer B, Hack M, et al. Extrapolation of rainflow matrices[J]. Extremes,2001, 4(3): 241-262.
37 黄柱安, 宋绪丁. 装载机驱动桥疲劳试验扭矩载荷谱的编制方法[J]. 现代制造工程, 2019, 41(1):139-143.
Huang Zhu-an, Song Xu-ding. The torque load spectrum compiling of loader driving axle fatigue test[J]. Modern Manufacturing Engineering, 2019, 41(1):139-143.
38 Smith R L. Extreme value theory based on the r largest annual events[J]. Journal of Hydrology, 1986, 86(1/2): 27-43.
39 Fogle J, Agarwal P, Manuel L. Towards an improved understanding of statistical extrapolation for wind turbine extreme loads[J]. Wind Energy, 2010, 11(6): 613-635.
40 Gonzalez J, Rodriguez D, Sued M. Threshold selection for extremes under a semiparametric model[J]. Statistical Methods & Applications, 2013, 22(4): 481-500.
41 Yang X, Zhang J, Ren W X. Threshold selection for extreme strain extrapolation due to vehicles on bridges[J]. Procedia Structural Integrity, 2017, 5: 1176-1183.
42 Coles S. An Introduction of Statistical Modelling of Extreme Values[M]. Berlin: Springer, 2001.
43 赵旭. 广义Pareto分布的统计推断[D]. 北京: 北京工业大学应用数理学院, 2012.
Zhao Xu. Statistical inference of the generalized Pareto distribution[D]. Beijing: School of Applied Mathematics and Science, Beijing University of Technology, 2012.
44 Thompson P, Cai Y, Reeve D, et al. Automated threshold selection methods for extreme wave analysis[J]. Coastal Engineering, 2009, 56(10): 1013-1021.
45 Pickhands J. Statistical inference using extreme order statisties[J]. The Annals of Statistics, 1975, 3(1): 119-131.
46 Ragan P, Manuel L. Statistical extrapolation methods for estimating wind turbine extreme loads[J]. Journal of Solar Energy Engineering, 2008, 130(3): No.031011.
47 Sun B, Yang Z J, Chen C H, et al. Compiling compression load spectrum of servo turret based on finite element and information entropy method[C]∥The 4th International Conference on System Reliability and Safety (ICSRS), Madrid, Spain, 2019: 566-571.
48 Harris R I. Improvements to the Method of Independent Storms[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(1/2): 1-30.
49 Martins E S, Stedinger J R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data[J]. Water Resources Research, 2000, 36(3): 737-744.
50 Dirceu S R, Jery R S. Bayesian MCMC flood frequency analysis with historical information[J]. Journal of Hydrology, 2005, 313(1/2): 97-116.
51 吴迪, 武岳, 杨庆山, 等. 围护结构非高斯风压极值估计的改进独立风暴法[J]. 建筑结构学报, 2014, 35(5): 151-156.
Wu Di, Wu Yue, Yang Qing-shan, et al. Improved method of independent storms for extreme value estimation of non-Gaussian wind pressure[J]. Journal of Building Structures, 2014, 35(5): 151-156.
52 Li G F, Wang S X, He J L, et al. Compilation of load spectrum of machining center spindle and application in fatigue life prediction[J]. Journal of Mechanical Science and Technology, 2019, 33(4): 1603-1613.
53 Zhang J, Lu J, Han W, et al. Program load spectrum compilation for accelerated life test of parabolic leaf spring[J]. International Journal of Automotive Technology, 2019, 20(2): 337-347.
54 Newman M E J, Barkema G T. Monte Carlo methods in statistical physics[M]. Oxford: Oxford University Press, 1999.
55 Silverman B W. Density estimation for statistics and data analysis. density estimation for statistics and data analysis[M]. Damariscotta: Chapman and Hall, 1986.
56 Socie D. Modelling expected service usage from short-term loading measurements[J]. International Journal of Materials & Product Technology, 2001, 16(4/5): 295-303.
57 Rudemo M. Empirical choice of histograms and kernel density estimators[J]. Scandinavian Journal of Statistics, 1982, 9(2): 65-78.
58 Bowman A W. An alternative method of cross-validation for the smoothing of density estimates[J]. Biometrika, 1984, 71(2): 353-360.
59 Scott D W, Terrell G R. Biased and unbiased cross-validation in density estimation[J]. Journal of the American Statistical Association, 1987, 82(400): 1131-1146.
60 Wand M P, Jones M C. Comparison of smoothing parameterizations in bivariate kernel density estimation[J]. Journal of the American Statistical Association, 1993, 88(422): 520-528.
61 刘海鸥, 张文胜, 徐宜. 基于核密度估计的履带车辆传动轴载荷谱编制[J]. 兵工学报, 2017, 38(9): 1830-1838.
Liu Hai-ou, Zhang Wen-sheng, Xu Yi. Load spectrum compiling for transmission shaft of tracked vehicle based on kernel density estimation[J]. Acta Armamentarii, 2017, 38(9): 1830-1838.
62 Wang J X, Li Y, Jiang Z. Non-parametric load extrapolation based on load extension for semi-axle of wheel loader[J]. Advances in Mechanical Engineering, 2017, 9(3): 1-12.
63 Wei Y X, Zhu H Y, Tang H, et al. Compilation of load spectrum of loader drive axle[J]. IOP Conference Series: Materials Science and Engineering, 2018, 322(7): No. 072059.
64 缪炳荣, 谭仕发, 邬平波, 等. 非稳态风致载荷下车体结构典型载荷谱仿真研究[J]. 机械工程学报, 2017, 53(10): 100-107.
Miao Bing-rong, Tan Shi-fa, Wu Ping-bo, et al. Research of typical fatigue load spectrum simulation of carbody structure based on non-stationary aerodynamic load[J]. Journal of Mechanical Engineering, 2017, 53(10): 100-107.
65 Wang J X, Chen H B, Li Y. A review of the extrapolation method in load spectrum compiling[J]. Journal of Mechanical Engineering, 2016, 62(1): 60-75.
66 Socie D F, Pompetzki M A. Modeling variability in service loading spectra[J]. Journal of ASTM International, 2004, 1(2): 1-12.
67 Lei Y G, Feng J, Lin J, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137-3147.
68 李国杰, 程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27(6): 647-657.
Li Guo-jie, Cheng Xue-qi. Research status and scientific thinking of big data[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(6): 647-657.
69 Qin S J. Process data analytics in the era of big data[J]. AIChE Journal, 2014, 60(9): 3092-3100.
70 刘智慧, 张泉灵. 大数据技术研究综述[J]. 浙江大学学报:工学版, 2014, 48(6): 957-972.
Liu Zhi-hui, Zhang Quan-ling. Research overview of big data technology[J]. Journal of Zhejiang University(Engineering and Technology Edition), 2014, 48(6): 957-972.
71 工信部电信研究院大数据白皮书(2020)[M]. 北京:工业和信息化部电信研究院,2020.
72 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1-19.
Hu Yue, Luo Dong-yang, Hua Kui, et al. Overview on deep learning[J]. CAAI Transactions of intelligent systems, 2019, 14(1): 1-19.
73 向华荣, 曾敬, 郑国峰, 等. 基于长短期记忆网络的载荷谱外推方法研究[J]. 重庆理工大学学报:自然科学, 2019, 33(8): 51-57.
Xiang Hua-rong, Zeng Jing, Zheng Guo-feng, et al. The study to load spectrum extrapolation method based on long-short term memory algorithm[J]. Journal of Chongqing University of Technology(Natural Science), 2019, 33(8): 51-57.
[1] 陈晋市,张淼淼,王普长,耿冬妮,王月行,张志伟. 基于主成分分析阈值选取的挖掘机主泵载荷谱外推[J]. 吉林大学学报(工学版), 2023, 53(2): 355-363.
[2] 朱凌,王秋成. 空间几何约束下新能源汽车驱动系统协调控制方法[J]. 吉林大学学报(工学版), 2022, 52(7): 1509-1514.
[3] 金兆辉,谷乐祺,洪伟,解方喜,尤田. 液压可变气门系统压力波动的影响分析[J]. 吉林大学学报(工学版), 2022, 52(4): 773-780.
[4] 王同建,杨书伟,谭晓丹,陈晋市,刘同文,职振领. 基于DEM⁃MBD联合仿真的液压挖掘机作业性能分析[J]. 吉林大学学报(工学版), 2022, 52(4): 811-818.
[5] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[6] 李国发,王彦博,何佳龙,王继利. 机电装备健康状态评估研究进展及发展趋势[J]. 吉林大学学报(工学版), 2022, 52(2): 267-279.
[7] 王磊,黄秉汉,丛家慧,回丽,周松,徐永臻. 超声冲击对搅拌摩擦焊缝疲劳性能的影响[J]. 吉林大学学报(工学版), 2022, 52(11): 2542-2548.
[8] 赵文伯,李玉洁,邓俊,李理光,吴志军. 针阀运动规律及其对喷嘴内流和喷雾特性影响[J]. 吉林大学学报(工学版), 2022, 52(10): 2234-2243.
[9] 胡兴军,张靖龙,辛俐,罗雨霏,王靖宇,余天明. 冷却管结构及风速对空冷中冷器性能的影响[J]. 吉林大学学报(工学版), 2021, 51(5): 1557-1564.
[10] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[11] 翟富刚,尹燕斌,李超,田纬,乔子石. 伺服电动缸传动系统刚度建模与前馈控制[J]. 吉林大学学报(工学版), 2021, 51(2): 442-449.
[12] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[13] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[14] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[15] 陈学深,陈涛,武涛,马旭,曾令超,陈林涛. 覆草冬种马铃薯收获机稻草分离机构设计与试验[J]. 吉林大学学报(工学版), 2020, 50(2): 749-757.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!