吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (4): 773-780.doi: 10.13229/j.cnki.jdxbgxb20200895

• 车辆工程·机械工程 • 上一篇    

液压可变气门系统压力波动的影响分析

金兆辉1(),谷乐祺1,洪伟1,解方喜1(),尤田2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.长春职业技术学院 工程技术分院,长春 130033
  • 收稿日期:2020-09-07 出版日期:2022-04-01 发布日期:2022-04-20
  • 通讯作者: 解方喜 E-mail:jinzhaohui@jlu.edu.cn;xiefx2011@jlu.edu.cn
  • 作者简介:金兆辉(1988-),男,工程师,博士研究生. 研究方向:内燃机工作过程优化与控制.E-mail:jinzhaohui@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51876079);吉林省科技发展计划项目(20200403150SF);中央高校基本科研业务费专项资金项目;以汽车运动为导向的能源与动力工程专业“五育”并举式创新实践教学改革与探索(NSJZW2021Y-35)

Analysis on pressure fluctuation of hydraulic variable valve actuation

Zhao-hui JIN1(),Le-qi GU1,Wei HONG1,Fang-xi XIE1(),Tian YOU2   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.Engineering Branch,Changchun University of Technology,Changchun 130033,China
  • Received:2020-09-07 Online:2022-04-01 Published:2022-04-20
  • Contact: Fang-xi XIE E-mail:jinzhaohui@jlu.edu.cn;xiefx2011@jlu.edu.cn

摘要:

针对液压可变气门机构实际运行中系统会产生压力波动,影响可变气门机构的工作性能这一问题,分析了压力波动产生的原因,并采取了有效措施减小压力波动。通过试验及AMESim仿真探究了气门弹簧刚度、气门活塞质量、节流孔径大小等关键参数对系统压力波动的影响。研究表明:当气门落座速度小于0.5 m/s时,增大薄壁孔径可以有效减小压力波动;增加气门弹簧刚度可以减小压力波动幅值;减小气门活塞质量有利于减小压力波动;增大气门活塞直径,压力波动幅值明显减小,最大可减小2.719 MPa;减小系统液压油总容积,可减少压力波动次数。

关键词: 动力机械工程, 液压可变气门机构, AMESim, 压力波动, 气门落座速度, 气门运动特性

Abstract:

The pressure fluctuation of the hydraulic variable valve actuation system may be produced in the actual operation, which will affect the performance of the variable valve actuation. In this paper, the reason and trend of pressure fluctuation are analyzed by combining experiment and simulation, and effective measures are taken to reduce pressure fluctuation. It is found that the key parameters such as valve spring stiffness, valve piston mass and the diameter size of the thin-walled hole,all have effect on the system pressure fluctuation. The research shows that when the valve-seating velocity is less than 0.5 m/s, the pressure fluctuation can be effectively reduced by choosing a larger thin-walled hole. The pressure fluctuation amplitude can be reduced by increasing the valve spring stiffness. The pressure fluctuation can be decreased by reducing the valve piston mass. When the diameter of valve piston increases, the pressure fluctuation amplitude decreases significantly, which can be reduced by 2.719 MPa at most. By reducing the total hydraulic fluid volume of the system can reduce the number of pressure fluctuations.

Key words: dynamic mechanical engineering, hydraulic variable valve actuation, AMESim, hydraulic pressure fluctuation, valve-seating velocity, valve movement characteristics

中图分类号: 

  • TK417

图1

液压可变气门机构三维图"

图2

试验台架"

表1

试验设备"

名 称厂 家型 号
角标仪奇石乐2613B
差动位移传感器上海江晶翔电子KDW?25?V1
高速数据采集卡北京瑞博华RBH8362
压电式压力传感器奇石乐6067C1Q01
燃烧分析仪DEWETRON2010
变频器广州三晶电气SAJ8000
节流阀海德福斯NV10?22

图3

液压系统示意图"

图4

气门升程试验曲线"

图5

气门活塞腔压力试验曲线"

图6

AMESim仿真模型"

图7

在2400 r∕min工况下不同薄壁小孔孔径对应气门升程、气门腔压力和气门运动速度的曲线"

图8

在3600 r∕min工况下不同薄壁小孔孔径对应气门升程、气门腔压力和气门运动速度的曲线"

图9

不同气门弹簧刚度对应气门腔压力曲线"

图10

不同气门活塞质量对应气门活塞腔压力和气门升程曲线"

图11

不同气门活塞直径对应气门活塞腔压力、流量曲线和气门升程曲线"

图12

不同液压油总容积对应气门腔压力曲线"

1 Tong S, Li X, Liu S, et al. Effect of two-stage valve lift for fuel economy and performance on a PFI gasoline engine[C]∥SAE Paper, 2014-01-2874.
2 Xu J T, Chang S Q, Fan X Y, et al. Effects of electromagnetic intake valve train on gasoline engine intake charging[J]. Applied Thermal Engineering, 2016, 96: 708-715.
3 Knop V, Mattioli L. An analysis of limits for part load efficiency improvement with VVA devices[J]. Energy Conversion and Management, 2015, 105: 1006-1016.
4 Liang L, Luo X H, Liu Y S, et al. A numerical investigation in effects of inlet pressure fluctuations on the flow and cavitation characteristics inside water hydraulic poppet valves[J]. International Journal of Heat and Mass Transfer, 2016, 103: 684-700.
5 Lu X X, Wang D M, Shen W, et al. Experimental investigation of the propagation characteristics of an interface wave in a jet pump under cavitation condition[J]. Experimental Thermal and Fluid Science, 2015, 63: 74-83.
6 陈飞. 全可变液压气门系统的建模仿真与试验研究[D]. 济南: 山东大学机械工程学院, 2018.
Chen Fei. Simulation and experiment research of a fully variable hydraulic valve system[D], Jinan: College of Mechanical Engineering, Shandong University, 2018.
7 韩志强,胡明艳,赵家辉,等. 电液可变气门系统液压油路瞬时压力的分析[J]. 内燃机工程, 2019, 40(2): 82-91.
Han Zhi-qiang, Hu Ming-yan, Zhao Jia-hui, et al. Analysis of instantaneous pressure of hydraulic circuit in electro-hydraulic variable valve timing system[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(2): 82-91.
8 谢宗法, 秦磊, 王志明, 等. 全可变气门机构中的液压压力波动现象[J]. 内燃机学报, 2011, 29(5): 455-460.
Xie Zong-fa, Qin Lei, Wang Zhi-ming, et al. Hydraulic pressure fluctuation in fully variable valve train[J]. Transactions of CSICE, 2011, 29(5): 455-460.
9 钟兵, 洪伟, 杨国志, 等. 液压可变气门机构压力波动及动作循环变动[J]. 吉林大学学报: 工学版, 2020, 50 (3): 796 - 803.
Zhong Bing, Hong Wei, Yang Guo-zhi, et al. Pressure fluctuation and cyclic variation of movement of hydraulic variable valve mechanism[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 796- 803.
10 钟兵, 洪伟, 金兆辉, 等. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报: 工学版, 2018, 48(3): 727-734.
Zhong Bing, Hong Wei, Jin Zhao-hui, et al. Movement characteristics of hydraulic variable valve train with early intake valve closing[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 727-734.
11 解方喜, 钟兵, 杨国志, 等. 凸轮驱动式液压可变气门机构设计及运动特性[J]. 汽车工程, 2020, 42(3): 307-314.
Xie Fang-xi, Zhong Bing, Yang Guo-zhi, et al. Design and motion characteristics of cam-driven hydraulic variable valve mechanism[J]. Automotive Engineering, 2020, 42(3): 307-314.
12 Jin Z H, Hong W, You T, et al. Effect of multi-factor coupling on the movement characteristics of the hydraulic variable valve actuation[J]. Energies, 2020, 13(11): 2870.
13 ZlobinA V, Tarasevich S É. Hydraulic resistance of pipes with uniform continuous roughness of varying profile[J]. Journal of Engineering Physics and Thermophysics, 2020, 93(3): 725-732.
14 Boretti Alberto. Use of variable valve actuation to control the load in a direct injection, turbocharged, spark-ignition engine[C]∥SAE Paper, 2010-01-2225.
15 宋佳彬. 变刚度气门弹簧设计方法研究[D]. 长春:吉林大学汽车工程学院, 2018.
Song Jia-bin. Research on design method of variable stiffness valve spring[D]. Changchun: College of Automotive Engineering, Jilin University, 2018.
[1] 张岩,刘玮,张树勇,裴毅强,董蒙蒙,秦静. 二/四冲程可变柴油机燃烧室热负荷的改善[J]. 吉林大学学报(工学版), 2022, 52(3): 504-514.
[2] 赵庆武,程勇,杨雪,王宁. 高重频纳秒脉冲放电点火系统设计[J]. 吉林大学学报(工学版), 2021, 51(2): 414-421.
[3] 李志军,刘浩,张立鹏,李振国,邵元凯,李智洋. 过滤壁结构对颗粒捕集器深床过滤影响的模拟[J]. 吉林大学学报(工学版), 2021, 51(2): 422-434.
[4] 王忠,李游,张美娟,刘帅,李瑞娜,赵怀北. 柴油机排气阶段颗粒碰撞过程动力学特征分析[J]. 吉林大学学报(工学版), 2021, 51(1): 39-48.
[5] 胡云峰,丁一桐,赵志欣,蒋冰晶,高金武. 柴油发动机燃烧过程数据驱动建模与滚动优化控制[J]. 吉林大学学报(工学版), 2021, 51(1): 49-62.
[6] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[7] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[8] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[9] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[10] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
[11] 王德军,吕志超,王启明,张建瑞,丁建楠. 基于EKF及调制傅式级数的缸压辨识[J]. 吉林大学学报(工学版), 2019, 49(4): 1174-1185.
[12] 臧鹏飞,王哲,高洋,孙晨乐. 直线电机/发动机系统稳态运行综合控制策略[J]. 吉林大学学报(工学版), 2019, 49(3): 798-804.
[13] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[14] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[15] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!