吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (10): 2897-2907.doi: 10.13229/j.cnki.jdxbgxb.20221604

• 交通运输工程·土木工程 • 上一篇    

加筋土石混合体动力特性

李丽华1,2(),康浩然1,2,张鑫1,2,肖衡林1,2(),刘一鸣1,2,周鑫隆1,2   

  1. 1.湖北工业大学 土木建筑与环境学院,武汉 430068
    2.湖北省生态道路工程技术研究中心,武汉 430068
  • 收稿日期:2022-12-16 出版日期:2024-10-01 发布日期:2024-11-22
  • 通讯作者: 肖衡林 E-mail:researchmailbox@163.com;xiaohenglin_0909@163.com
  • 作者简介:李丽华(1980-),女,教授,博士.研究方向:加筋土,路基工程,环境岩土工程.E-mail: researchmailbox@163.com
  • 基金资助:
    国家自然科学基金项目(52278347);国家自然科学基金联合基金重点项目(U22A20232);湖北省基金创新群体项目(2024AFA009);湖北省高等学校优秀中青年科技创新团队项目(T2023006)

Dynamic characteristics of reinforced soil-rock mixture

Li-hua LI1,2(),Hao-ran KANG1,2,Xin ZHANG1,2,Heng-lin XIAO1,2(),Yi-ming LIU1,2,Xin-long ZHOU1,2   

  1. 1.School of Civil Engineering,Architecture and Environment,Hubei University of Technology,Wuhan 430068,China
    2.Hubei Ecological Road Research and Engineering Center,Wuhan 430068,China
  • Received:2022-12-16 Online:2024-10-01 Published:2024-11-22
  • Contact: Heng-lin XIAO E-mail:researchmailbox@163.com;xiaohenglin_0909@163.com

摘要:

为探究土石混合体在循环荷载作用下的动力特性,采用大型动三轴试验仪,研究两种不同粒径类型土石混合体永久变形规律以及不同加筋方式下土石混合体滞回圈演变、动弹性模量及阻尼比发展规律。研究结果表明:不同动应力幅值下试样轴向应变(ε)-振动次数(N)曲线符合安定理论,且更符合双曲线模型发展规律,加筋作用能显著提高土石混合体试样动力稳定性;动应力幅值较大时,掺入大粒径砾石(GL)土石混合体试样较掺入小粒径砾石(GS)土石混合体试样咬合摩擦作用更显著,累积塑性变形更小。土石混合体作为非均质工程材料,循环加载过程中,滞回圈在低循环次数下呈现“锯齿状”,30次加载循环前后,格栅加筋试样动弹性模量增长率提高,阻尼比由不稳定波动开始减小。对比不同加筋试验数据,结果表明:土工格室加筋增强土石混合体韧性及刚度效果优于双向土工格栅加筋。

关键词: 岩土工程, 加筋土石混合体, 大型动三轴试验, 滞回圈, 动弹性模量, 阻尼比

Abstract:

In order to investigate the dynamic properties of SRM under cyclic loading, the law of permanent deformation of soil-rock mixture (SRM) with two different particle size types, the evolution of hysteresis circle, dynamic elastic modulus and damping ratio development law of SRM under different reinforcement methods are investigated by large dynamic triaxial test. The experimental results show that the axial strain (ε)-vibration number (N) curve of the specimen under different dynamic stress amplitude is consistent with the shakedown theory and more in line with the hyperbolic model development law. The reinforcement effect significantly improves the dynamic stability of the SRM specimen; when the dynamic stress amplitude is larger, the occlusal friction effect of the SRM specimen mixed with large gravel(GL) is more significant than that of the SRM specimen mixed with small gravel(GS), and the accumulated plastic deformation is smaller. As an inhomogeneous engineering material, the hysteresis loop shows a "sawtooth" shape at low cycle times during cyclic loading. Before and after 30 loading cycles, the growth rate of the dynamic elastic modulus of the geogrid-reinforced specimen increases, and the damping ratio begins to decrease from the unstable fluctuation. Comparing different reinforcement test data, the results show that the geocell reinforcement enhances the resilient and stiffness of SRM better than the biaxial geogrid reinforcement.

Key words: geotechnical engineering, reinforced soil-rock mixture, large dynamic triaxial test, hysteresis loop, dynamic elastic modulus, damping ratio

中图分类号: 

  • TU414

表1

试验土样物理参数"

不均匀系数Cu曲率系数CC最佳含水率/%最大干密度/ (g·cm-3比重
14.53.218.3%1.812.73

图1

试验土样颗粒级配曲线"

表2

砾石基本物理力学指标"

颜色吸水率/%针片状含量/%毛体积相对密度γb
灰黑色0.45.02.81

图2

试验所用筋材"

表3

土工格室基本物理力学指标"

土工格室型号TGLG-PP-50-400
格室片抗拉强度/MPa24
延伸率/%7.6
断裂伸长率/%9.8
焊接处抗拉强度/(kN·m-110
最大拉伸力/MPa102.8

图3

土石混合体试样加筋排布方式"

图4

动三轴试验荷载施加方式"

表4

动三轴试验设计参数"

试样编号围压σ3/kPa动应力幅值σd/kPa
GL-W10050、75、100、125
GS-W10050、75、100、125
GL-G1100100
GL-G3100100
GS-G1100100
GS-G3100100
GL-C1100100
GL-C3100100
GS-C1100100
GS-C3100100

图5

GS-W、GL-W试样ε-N曲线"

图6

颗粒材料永久变形行为"

图7

土石试样累积应变速率与轴向累积变形的关系曲线"

图8

土石试样ε-N拟合曲线"

图9

不同加筋方式下两类土石混合体试样动应力-动应变曲线"

图10

不同循环次数下加筋土石混合体试样动应力-动应变曲线"

图11

典型滞回圈示意图"

图12

加筋土石混合体动弹性模量"

图13

加筋土石混合体试样阻尼比"

表5

两类加筋土石混合体试样阻尼比"

试样G1G3C1C3
GL0.19080.18570.16950.1471
GS0.20050.18170.18600.1621
1 徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56, 70.
Xu Wen-jie, Hu Rui-lin. Experiment research on consolidation tests of unsaturatedsilty clay under controlled matric suction[J]. Hydrogeology & Engineering Geology, 2009, 36(4): 50-56, 70.
2 胡瑞林, 李晓, 王宇, 等. 土石混合体工程地质力学特性及其结构效应研究[J]. 工程地质学报, 2020, 28(2): 255-281.
Hu Rui-lin, Li Xiao, Wang Yu, et al. Research on engineering geomechanics and structural effect of soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(2): 255-281.
3 李晓, 廖秋林, 赫建明, 等. 土石混合体力学特性的原位试验研究[J]. 岩石力学与工程学报, 2007, 191(12): 2377-2384.
Li Xiao, Liao Qiu-lin, Hao Jian-ming, et al. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 191(12): 2377-2381.
4 Crosta G B. Failure and flow development of a complex slide: the 1993 sesa landslide[J]. Engineering Geology, 2001, 59(1-2): 173-199.
5 景宏君, 张延青, 顾行文, 等. 土石混合填料大型三轴剪切试验研究[J]. 西安科技大学学报, 2019, 39(2): 270-275.
Jing Hong-jun, Zhang Yan-qing, Gu Xing-wen, et al. Large-scale triaxial shear test of soil rock mixture[J]. Journal of Xi'an University of Science and Technology, 2019, 39(2): 270-275.
6 程展林, 潘家军. 土石坝工程领域的若干创新与发展[J]. 长江科学院院报, 2021, 38(5): 1-10, 16.
Cheng Zhan-lin, Pan Jia-jun. Some innovations and developments in the field of earth-rock dam engineering[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 1-10, 16.
7 Sharafisafa M, Aliabadian Z, Luming S. Crack initiation and failure development in bimrocks using digital image correlation under dynamic load[J]. Theoretical and Applied Fracture Mechanics, 2020, 109:No. 102688.
8 舒志乐, 刘新荣, 刘保县, 等. 基于分形理论的土石混合体强度特征研究[J]. 岩石力学与工程学报, 2009, 28(): 2651-2656.
Shu Zhi-le, Liu Xin-rong, Liu Bao-xian, et al. Study of strength properties of earth-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup.1): 2651-2656.
9 胡峰,李志清,胡瑞林, 等. 基于大型直剪试验的土石混合体剪切带变形特征试验研究[J]. 岩石力学与工程学报, 2018, 37(3): 766-778.
Hu Feng, Li Zhi-qing, Hu Rui-lin, et al. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(3): 766-778.
10 赵明华,刘建军,罗宏, 等. 土石混填体抗剪强度特性及影响因素的试验研究[J]. 岩土力学, 2017, 38(4): 965-972.
Zhao Ming-hua, Liu Jian-jun, Luo Hong, et al. Experimental studies of shear strength characteristics and influencing factors of soil-rock aggregate mixture[J]. Rock and Soil Mechanics, 2017, 38(4): 965-972.
11 夏加国,胡瑞林,高玮. 土石混合体强度特性的大型三轴试验[C]//全国工程地质学术年会论文集,成都,2016:1228-1235.
12 曹文贵, 黄文健, 王江营, 等. 土石混填体变形力学特性大型三轴试验研究[J]. 湖南大学学报:自然科学版, 2016, 43(3): 142-148.
Cao Wen-gui, Huang Wen-jian, Wang Jiang-ying, et al. Large-scale triaxial test study on deformation and intensity characteristics of soil-rock aggregate mixture[J]. Journal of Hunan University(Natural Sciences), 2016, 43(3): 142-148.
13 李丽华, 秦浪灵, 肖衡林, 等. 加筋建筑垃圾土大型动三轴试验及加筋机制探讨[J]. 岩石力学与工程学报, 2020, 39(8): 1682-1695.
Li Li-hua, Qin Lang-ling, Xiao Heng-lin, et al. Large dynamic triaxial test study on reinforcement mechanisms of reinforced construction waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1682-1695.
14 Song F, Liu H, Yang B, et al. Large-scale triaxial compression tests of geocell-reinforced sand[J]. Geosynthetics International, 2019, 26(4): 388-395.
15 王家全, 侯森磊, 林志南, 等. 半正弦循环交通动载下加筋砾性土动力特性研究[J]. 振动与冲击, 2022, 41(3): 90-98.
Wang Jia-quan, Hou Sen-lei, Lin Zhi-nan, et al. Dynamic characteristics of reinforced gravelly soil under semi-sinusoidal cyclic traffic dynamic load[J]. Journal of Vibration and Shock, 2022, 41(3): 90-98.
16 李丽华, 韩琦培, 李文涛, 等. 循环荷载作用下建筑垃圾土动力性能[J]. 长江科学院院报, 2022, 39(10): 97-102.
Li Li-hua, Han Qi-pei, Li Wen-tao, et al. Dynamic performance of construction waste soil under cyclic loading[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(10): 97-102.
17 . 土工试验规程 [S].
18 .公路工程集料试验规程 [S].
19 Li L, Qin L, Xiao H, et al. The triaxial test of construction and demolition (C&D) materials with different particle sizes and sand contents[J]. European Journal of Environmental and Civil Engineering,2023,27(9/10) :2800-2821.
20 鲁洋, 刘斯宏, 张勇敢, 等. 黏质土石混合体渗透特性试验及演化机制探讨[J]. 岩土力学, 2021, 42(6): 1540-1548.
Lu Yang, Liu Si-hong, Zhang Yong-gan, et al. Experimental study and mechanism analysis of permeability performance of clayey soil-rock mixtures[J]. Rock and Soil Mechanics, 2021, 42(6): 1540-1548.
21 Bathurst R, Karpurapu R. Large-scale triaxial compression testing of geocell-reinforced granular soils[J]. Geotechnical Testing Journal, 1993, 16(3):296-303.
22 黄玲, 徐晗, 饶锡保, 等. 砾质土钻孔灌砂工艺三轴试验效果研究[J]. 长江科学院院报, 2009, 26(12): 84-88.
Huang Ling, Xu Han, Rao Xi-bao, et al. Triaxial tests effect study on drilling and pumped sands of gravelly soil[J]. Journal of Yangtze River Scientific Research Institute, 2009, 26(12): 84-88.
23 Collins I F, Wang A P, Saunders L R. Shakedown theory and the design of unbound pavements[J]. Road and Transport Research, 1993, 2(4): 28-39.
24 Werkmeister S, Dawson A R, Wellner F. Permanent deformation behavior of granular materials and the shakedown concept[J]. Transportation Research Record,2001, 1757(1): 75-81.
25 Chen W B, Feng W Q, Yin J H, et al. Characterization of permanent axial strain of granular materials subjected to cyclic loading based on shakedown theory[J]. Construction and Building Materials, 2019, 198(20): 751-761.
26 李琼林, 青于蓝, 崔凯, 等. 长期循环荷载下土的动力学特性与本构模型研究进展[J]. 西南交通大学学报,2024(2): 377-391.
Li Qiong-lin, Yu-lan Qing, Cui Kai, et al. The review of soil dynamic behaviors and constitutive model under long-term cyclic loading[J]. Journal of Southwest Jiaotong University,2024(2): 377-391.
27 马少坤, 王博, 刘莹, 等. 南宁地铁区域饱和圆砾土大型动三轴试验研究[J]. 岩土工程学报, 2019, 41(1): 168-174.
Ma Shao-kun, Wang Bo, Liu Ying, et al. Large-scale dynamic triaxial tests on saturated gravel soil in Nanning metro area[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(1): 168-174.
28 Yang Z H, Yu Z R, Tai B W.Investigation of the deformation and strength properties of fouled graded macadam materials in heavy-haul railway subgrade beds[J].Construction and Building Materials,2021,273(31):No.121778.
29 谢定义. 土动力学[M]. 北京:高等教育出版社, 2011.
30 肖建清, 冯夏庭, 丁德馨, 等. 常幅循环荷载作用下岩石的滞后及阻尼效应研究[J]. 岩石力学与工程学报, 2010, 29(8): 1677-1683.
Xiao Jian-qing, Feng Xia-ting, Ding De-xin, et al. Study of hysteresis and damping effects of rock subjected to constant amplitude cyclic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(8): 1677-1683.
31 常建梅, 李晓慧, 张伏光, 等. 基于大型动三轴试验和图形分析法的有砟道床劣化特性研究[J]. 铁道学报, 2022, 44(7): 107-116.
Chang Jian-mei, Li Xiao-hui, Zhang Fu-guang, et al. Degradation mechanism of railway ballast by large-scale cyclic triaxial test and image analysis method[J]. Journal of the China Railway Society, 2022, 44(7): 107-116.
[1] 李丽华,李孜健,肖衡林,曹文哲,周鑫隆,黄少平. 土工格栅加筋建筑垃圾土循环剪切试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1612-1623.
[2] 何华飞,李兆平,符瑞安,马绍麟,黄明利. 考虑地层约束效应的预制侧墙节点抗震性能试验[J]. 吉林大学学报(工学版), 2024, 54(6): 1601-1611.
[3] 刘方成,王将,吴孟桃,补国斌,何杰. 土工格栅加筋橡胶砂应力-应变特性试验[J]. 吉林大学学报(工学版), 2023, 53(9): 2542-2553.
[4] 宫亚峰,吴树正,毕海鹏,谭国金. 基于现场监测技术的装配式箱涵温度场及冻胀分析[J]. 吉林大学学报(工学版), 2023, 53(8): 2321-2331.
[5] 惠迎新,陈嘉伟. 基于改进遗传算法的挤扩支盘群桩优化方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2089-2098.
[6] 宫亚峰,吴树正,毕海鹏,周冬明,谭国金,黄晓明. 玄武岩纤维活性粉末混凝土与钢绞线粘结滑移过程声学特性表征[J]. 吉林大学学报(工学版), 2023, 53(6): 1819-1832.
[7] 刘顺,唐小微,栾一晓. 可液化土阻尼系数对地铁结构地震响应的影响[J]. 吉林大学学报(工学版), 2023, 53(1): 159-169.
[8] 唐亮,司盼,崔杰,凌贤长,满孝峰. 液化微倾场地群桩地震反应分析拟静力方法[J]. 吉林大学学报(工学版), 2022, 52(4): 847-855.
[9] 姜屏,周琳,毛天豪,袁俊平,王伟,李娜. 水泥改性废弃泥浆损伤模型及时间效应[J]. 吉林大学学报(工学版), 2022, 52(12): 2874-2882.
[10] 张飞,朱玉明,杨尚川,王庶懋. 加筋土挡墙碳排放计算方法与减排性分析[J]. 吉林大学学报(工学版), 2021, 51(2): 631-637.
[11] 陶文斌,侯俊领,陈铁林,唐彬. 高预紧力后张法全长锚固支护力学分析[J]. 吉林大学学报(工学版), 2020, 50(2): 631-640.
[12] 高登辉,邢义川,郭敏霞,张爱军,王献涛,马保红. 非饱和重塑黄土⁃混凝土接触面修正双曲线模型[J]. 吉林大学学报(工学版), 2020, 50(1): 156-164.
[13] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[14] 古海东,罗春红. 疏排桩-土钉墙组合支护基坑土拱效应模型试验[J]. 吉林大学学报(工学版), 2018, 48(6): 1712-1724.
[15] 毛钰, 左曙光, 林福. 转矩波动下电动轮系统机电耦合振动特性[J]. 吉林大学学报(工学版), 2017, 47(3): 908-916.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!