吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1612-1620.doi: 10.13229/j.cnki.jdxbgxb.20230089
• 交通运输工程·土木工程 • 上一篇
吴春利1(),黄诗茗1,李魁1,顾正伟1(),黄晓明2,张炳涛3,杨润超3
Chun-li WU1(),Shi-ming HUANG1,Kui LI1,Zheng-wei GU1(),Xiao-ming HUANG2,Bing-tao ZHANG3,Run-chao YANG3
摘要:
为了解洪水对桥墩的作用规律,提出采用数值计算直接求解流动主控方程的方法获得各种流动现象规律。结合流体力学仿真分析技术,通过计算机数值计算和图像显示的方法描述流场的数值解,再采用拉丁超立方抽样和分层随机抽样,尽可能保证每一个变量的全覆盖,并用统计分析方法对抽样数据进行分析。针对洪水流速、桥墩形状、数量及间距、水流入射角度等多种洪水致灾关键因素对桥墩水平阻力效应的影响展开研究,获得了较全面、准确的洪水作用效应,建立了多种影响因素影响下的洪水致灾作用效应分析模型,为正确评估桥梁服役状态,确保洪灾下桥梁的安全运营提供了理论支撑。
中图分类号:
1 | Naudascher E, Medlarz H J. Hydrodynamic loading and backwater effect of partially submerged bridges[J]. Journal of Hydraulic Research, 1983, 21(3): 213-232. |
2 | Almasri A, Moqbel S. Numerical evaluation of AASHTO drag force coefficients of water flow around bridge piers[J]. Journal of Engineering Materials & Technology, 2017, 139(2): 1-8. |
3 | 刘兵, 梁发云, 彭君. 地震与洪水作用下桥墩基础易损性曲线与回归分析[J]. 结构工程师, 2016, 32(6): 155-161. |
Liu Bing, Liang Fa-yun, Peng Jun. Fragility analysis and parameters regression of bridge foundationunder the combined action of earthquake and flood[J]. Structural Engineers, 2016, 32(6): 155-161. | |
4 | 杨万理, 吴承伟, 朱权龙, 等.桥梁墩柱三维绕流特性精细化研究[J]. 西南交通大学学报, 2020, 55(1): 134-143. |
Yang Wan-li, Wu Cheng-wei, Zhu Quan-long. Refined study on 3D flow characteristics around bridge piers[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 134-143. | |
5 | 吴安杰, 杨万理, 赵雷. 洪水对桥墩的瞬间冲击效应[J]. 公路交通科技, 2018, 35(6): 67-73. |
Wu An-jie, Yang Wan-li, Zhao Lei. Moment impact effect of flood on bridge pier[J]. Journal of Highway and Transportation Research and Development. 2018, 35(6): 67-73. | |
6 | Nasim M, Setunge S, Zhou S W, et al. An investigation of water-flow pressure distribution on bridge piers under flood loading[J]. Structure and Infrastructure Engineering, 2019, 15(2): 219-229. |
7 | Zhang X T, Chen A R. Analysis on influence factors of the calculation of horizontial wave forces acting on main girders of bridge[C]∥International Symposium mon Life-Cycle Performance of Bridge and Structures, Changsha, China, 2010: 972-977. |
8 | Dráb A, Duchan D, Špano M, et al. Determination of the hydrodynamic load on an inundated bridge deck by measurements performed on a physical model[J]. International Journal of Civil Engineering, 2019, 17(10): 1491-1502. |
9 | Digambar B P, Prachi S, Rushikesh P J. Evaluation of assorted profiles in bridge pier exposed to exciting flood loading[J]. Jordan Journal of Civil Engineering, 2021, 15(4): 633-649. |
10 | Sturm M, Gems B, Keller F, et al. Experimental analyses of impact forces on buildings exposed to fluvial hazards[J]. Journal of Hydrology, 2018, 565: 1-13. |
11 | Malavasi S, Guadagnini A. Hydrodynamic loading on river bridges[J]. Journal of Hydraulic Engineering, 2003, 129(11): 854-861. |
12 | Dutta S, Panigrahi P K, Muralidhar K. Experimental investigation of flow past a square cylinder at an angle of incidence[J]. Journal of Engineering Mechanics, 2008, 134(9): 788-803. |
13 | Yoon D H, Yang K S, Choi C B. Flow past a square cylinder with angle of incidence[J]. Physics of Fluids, 2010, 2(4): No.43603. |
14 | Wu T R, Wang H, Ko Y Y, et al. Forensic diagnosis on flood-induced bridge failure. II: framework of quantitative assessment[J]. Journal of Performance of Constructed Facilities, 2014, 28(1): 85-95. |
15 | . 公路桥涵设计通用规范 [S]. |
16 | FHWA-HRT-09-028, 2009. Hydrodynamic forces on undated bridge decks [S]. |
17 | AS 5100 .2:2017. |
Australian standard code for bridge design specifications [S]. | |
18 | I. R.C:6—2016. Standard specifications and code of practice for road bridges [S]. |
19 | Indian Road Congress. Standard specifications and code of practice for road bridges section: II—loads and load combinations[DB/OL]. |
[1] | 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600. |
[2] | 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565. |
[3] | 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611. |
[4] | 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380. |
[5] | 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111. |
[6] | 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495. |
[7] | 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816. |
[8] | 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873. |
[9] | 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652. |
[10] | 贾彦峰,曲大义,林璐,姚荣涵,马晓龙. 基于运行轨迹的网联混合车流速度协调控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2051-2060. |
[11] | 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078. |
[12] | 孙小雪,钟辉,陈海鹏. 基于决策树分类技术的学生考试成绩统计分析系统[J]. 吉林大学学报(工学版), 2021, 51(5): 1866-1872. |
[13] | 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755. |
[14] | 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762. |
[15] | 姚宗伟,高旭东,刘刚,毕秋实. 基于数值仿真的大型塔式磨机工作特性分析[J]. 吉林大学学报(工学版), 2021, 51(5): 1642-1650. |
|