吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (6): 1612-1620.doi: 10.13229/j.cnki.jdxbgxb.20230089

• 交通运输工程·土木工程 • 上一篇    

基于数值仿真和统计分析的洪水作用下桥墩作用效应分析

吴春利1(),黄诗茗1,李魁1,顾正伟1(),黄晓明2,张炳涛3,杨润超3   

  1. 1.吉林大学 交通学院,长春 130022
    2.东南大学 交通学院,南京 210018
    3.吉林省公路管理局,长春 130021
  • 收稿日期:2023-02-01 出版日期:2023-06-01 发布日期:2023-07-23
  • 通讯作者: 顾正伟 E-mail:clwu@jlu.edu.cn;gzw@jlu.edu.cn
  • 作者简介:吴春利(1978-),女,副教授,博士.研究方向:桥梁结构健康监测与性能评估.E-mail:clwu@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB2600601);吉林省教育厅科学技术研究项目(JJKH20211114KJ);吉林省科技发展计划项目(20230203137SF);吉林省交通运输科技计划项目(2021-01-02)

Analysis of pier action effect under flood based on numerical simulation and statistical analysis

Chun-li WU1(),Shi-ming HUANG1,Kui LI1,Zheng-wei GU1(),Xiao-ming HUANG2,Bing-tao ZHANG3,Run-chao YANG3   

  1. 1.School of Transportation,Jilin University,Changchun 130022,China
    2.School of Transportation,Southeast University,Nanjing 210018,China
    3.Highway Administration of Jilin Province,Changchun 130021,China
  • Received:2023-02-01 Online:2023-06-01 Published:2023-07-23
  • Contact: Zheng-wei GU E-mail:clwu@jlu.edu.cn;gzw@jlu.edu.cn

摘要:

为了解洪水对桥墩的作用规律,提出采用数值计算直接求解流动主控方程的方法获得各种流动现象规律。结合流体力学仿真分析技术,通过计算机数值计算和图像显示的方法描述流场的数值解,再采用拉丁超立方抽样和分层随机抽样,尽可能保证每一个变量的全覆盖,并用统计分析方法对抽样数据进行分析。针对洪水流速、桥墩形状、数量及间距、水流入射角度等多种洪水致灾关键因素对桥墩水平阻力效应的影响展开研究,获得了较全面、准确的洪水作用效应,建立了多种影响因素影响下的洪水致灾作用效应分析模型,为正确评估桥梁服役状态,确保洪灾下桥梁的安全运营提供了理论支撑。

关键词: 桥梁工程, 桥墩, 洪水, 作用效应, 数值仿真, 统计分析

Abstract:

To understand the action law of flood on bridge pier, a numerical method was proposed to directly solve the main control equation of flow in order to find the law of various flow phenomena. Combined with the fluid dynamics simulation analysis technology, the numerical solution of the flow field was described by computer numerical calculation and image display, and then Latin hypercube sampling and stratified random sampling were adopted to ensure the full coverage of each variable as far as possible, and statistical analysis method was used to analyze the sampling data. Research was conducted on the influence of flood flow velocity, pier shape, pier number and spacing, water flow incidence Angle and other key flood disaster factors on the horizontal resistance effect of pier, to obtain a more comprehensive and accurate flood effect, and establish the flood disaster effect analysis model under the influence of various factors. In order to correctly evaluate the service status of bridge and provide theoretical support to ensure safe operation of bridge under flood.

Key words: bridge engineering, pier, flood, action effect, numerical simulation, statistical analysis

中图分类号: 

  • U441

表1

洪水作用下桥墩关键影响因素"

参数取值
流速/(m·s-11~20
水流入射偏角度/(°)0~45
桥墩长宽比1~15
桥墩尖端夹角/(°)30~180
桥墩横桥向间距/m1~25
桥墩纵桥向间距/m1~65

表2

流体域取值范围"

流体域尺寸取值
侧流区长度/D5~20
侧流区长度/D5~30
后流区长度/D5~40

图1

阻力系数受流体域长度取值影响曲线"

图2

桥墩结构几何参数"

图3

不同桥墩结构水平阻力云图"

图4

不同桥墩阻力系数随流速变化曲线"

图5

桥墩阻力系数随长宽比L/B变化曲线"

图6

不同入射偏角方形截面桥墩阻力迹线图"

图7

方形截面桥墩阻力系数随入射偏角变化曲线"

图8

不同入射偏角矩形截面桥墩阻力迹线图(L/B=3)"

图9

不同入射偏角下阻力系数随L/B变化曲线"

图10

尖端形桥墩水平阻力系数随夹角角度变化曲线"

图11

三个桥墩纵轴不同偏角水平阻力云图"

图12

三个桥墩水平阻力系数随纵轴偏角的变化曲线(间距为3 m)"

图13

横向2个桥墩水平阻力系数随L/D变化曲线"

图14

横向2个桥墩相互干扰随L/D变化曲线"

图15

三个横向桥墩阻力云图"

图16

横向3个桥墩水平阻力系数随L/D变化曲线"

图17

三个纵向桥墩水平阻力云图"

图18

纵向3个桥墩水平阻力系数随L/D变化曲线"

1 Naudascher E, Medlarz H J. Hydrodynamic loading and backwater effect of partially submerged bridges[J]. Journal of Hydraulic Research, 1983, 21(3): 213-232.
2 Almasri A, Moqbel S. Numerical evaluation of AASHTO drag force coefficients of water flow around bridge piers[J]. Journal of Engineering Materials & Technology, 2017, 139(2): 1-8.
3 刘兵, 梁发云, 彭君. 地震与洪水作用下桥墩基础易损性曲线与回归分析[J]. 结构工程师, 2016, 32(6): 155-161.
Liu Bing, Liang Fa-yun, Peng Jun. Fragility analysis and parameters regression of bridge foundationunder the combined action of earthquake and flood[J]. Structural Engineers, 2016, 32(6): 155-161.
4 杨万理, 吴承伟, 朱权龙, 等.桥梁墩柱三维绕流特性精细化研究[J]. 西南交通大学学报, 2020, 55(1): 134-143.
Yang Wan-li, Wu Cheng-wei, Zhu Quan-long. Refined study on 3D flow characteristics around bridge piers[J]. Journal of Southwest Jiaotong University, 2020, 55(1): 134-143.
5 吴安杰, 杨万理, 赵雷. 洪水对桥墩的瞬间冲击效应[J]. 公路交通科技, 2018, 35(6): 67-73.
Wu An-jie, Yang Wan-li, Zhao Lei. Moment impact effect of flood on bridge pier[J]. Journal of Highway and Transportation Research and Development. 2018, 35(6): 67-73.
6 Nasim M, Setunge S, Zhou S W, et al. An investigation of water-flow pressure distribution on bridge piers under flood loading[J]. Structure and Infrastructure Engineering, 2019, 15(2): 219-229.
7 Zhang X T, Chen A R. Analysis on influence factors of the calculation of horizontial wave forces acting on main girders of bridge[C]∥International Symposium mon Life-Cycle Performance of Bridge and Structures, Changsha, China, 2010: 972-977.
8 Dráb A, Duchan D, Špano M, et al. Determination of the hydrodynamic load on an inundated bridge deck by measurements performed on a physical model[J]. International Journal of Civil Engineering, 2019, 17(10): 1491-1502.
9 Digambar B P, Prachi S, Rushikesh P J. Evaluation of assorted profiles in bridge pier exposed to exciting flood loading[J]. Jordan Journal of Civil Engineering, 2021, 15(4): 633-649.
10 Sturm M, Gems B, Keller F, et al. Experimental analyses of impact forces on buildings exposed to fluvial hazards[J]. Journal of Hydrology, 2018, 565: 1-13.
11 Malavasi S, Guadagnini A. Hydrodynamic loading on river bridges[J]. Journal of Hydraulic Engineering, 2003, 129(11): 854-861.
12 Dutta S, Panigrahi P K, Muralidhar K. Experimental investigation of flow past a square cylinder at an angle of incidence[J]. Journal of Engineering Mechanics, 2008, 134(9): 788-803.
13 Yoon D H, Yang K S, Choi C B. Flow past a square cylinder with angle of incidence[J]. Physics of Fluids, 2010, 2(4): No.43603.
14 Wu T R, Wang H, Ko Y Y, et al. Forensic diagnosis on flood-induced bridge failure. II: framework of quantitative assessment[J]. Journal of Performance of Constructed Facilities, 2014, 28(1): 85-95.
15 . 公路桥涵设计通用规范 [S].
16 FHWA-HRT-09-028, 2009. Hydrodynamic forces on undated bridge decks [S].
17 AS 5100 .2:2017.
Australian standard code for bridge design specifications [S].
18 I. R.C:6—2016. Standard specifications and code of practice for road bridges [S].
19 Indian Road Congress. Standard specifications and code of practice for road bridges section: II—loads and load combinations[DB/OL].
[1] 谭国金,孔庆雯,何昕,张攀,杨润超,朝阳军,杨忠. 基于动力特性和改进粒子群优化算法的桥梁冲刷深度识别[J]. 吉林大学学报(工学版), 2023, 53(6): 1592-1600.
[2] 江辉,李新,白晓宇. 桥梁抗震结构体系发展述评:从延性到韧性[J]. 吉林大学学报(工学版), 2023, 53(6): 1550-1565.
[3] 刘子玉,陈士通,支墨墨,黄晓明,陈哲心. 可“临-永”转换抢修钢墩应急使用极限承载力[J]. 吉林大学学报(工学版), 2023, 53(6): 1601-1611.
[4] 张玥,刘传森,宋飞. 桥台背墙对连续梁桥地震易损性的影响[J]. 吉林大学学报(工学版), 2023, 53(5): 1372-1380.
[5] 兰树伟,周东华,陈旭,莫南明. 双柱式高墩桥梁整体稳定性的实用算法[J]. 吉林大学学报(工学版), 2023, 53(4): 1105-1111.
[6] 孙琪凯,张楠,刘潇,周子骥. 基于Timoshenko梁理论的钢-混组合梁动力折减系数[J]. 吉林大学学报(工学版), 2023, 53(2): 488-495.
[7] 叶华文,段智超,刘吉林,周渝,韩冰. 正交异性钢⁃混组合桥面的轮载扩散效应[J]. 吉林大学学报(工学版), 2022, 52(8): 1808-1816.
[8] 王立峰,肖子旺,于赛赛. 基于Bayesian网络的多塔斜拉桥挂篮系统风险分析的新方法[J]. 吉林大学学报(工学版), 2022, 52(4): 865-873.
[9] 张彦玲,王灿,张旭,王昂洋,李运生. 不同吊杆形式悬索桥人致振动分析及舒适度评价[J]. 吉林大学学报(工学版), 2022, 52(11): 2644-2652.
[10] 贾彦峰,曲大义,林璐,姚荣涵,马晓龙. 基于运行轨迹的网联混合车流速度协调控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2051-2060.
[11] 钟昌均,王忠彬,柳晨阳. 悬索桥主索鞍承载力影响因素及结构优化[J]. 吉林大学学报(工学版), 2021, 51(6): 2068-2078.
[12] 孙小雪,钟辉,陈海鹏. 基于决策树分类技术的学生考试成绩统计分析系统[J]. 吉林大学学报(工学版), 2021, 51(5): 1866-1872.
[13] 陈巍,万田保,王忠彬,厉萱,沈锐利. 悬索桥主缆除湿的内部送气管道设计与性能[J]. 吉林大学学报(工学版), 2021, 51(5): 1749-1755.
[14] 郭殊伦,钟铁毅,闫志刚. 大跨度斜拉桥拉索的抖振响应计算方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1756-1762.
[15] 姚宗伟,高旭东,刘刚,毕秋实. 基于数值仿真的大型塔式磨机工作特性分析[J]. 吉林大学学报(工学版), 2021, 51(5): 1642-1650.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!