吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (12): 3433-3442.doi: 10.13229/j.cnki.jdxbgxb.20230137

• 车辆工程·机械工程 • 上一篇    下一篇

基于稀疏混沌多项式法的电动汽车无线电能传输效率不确定性量化

王天皓1(),李博1,于全毅1,徐琳琳1,贾国强2,关珊珊1()   

  1. 1.吉林大学 仪器科学与电气工程学院,长春 130061
    2.中国质量认证中心 汽车部,北京 100070
  • 收稿日期:2023-02-16 出版日期:2024-12-01 发布日期:2025-01-24
  • 通讯作者: 关珊珊 E-mail:wangtianhao@jlu.edu.cn;guanshanshan@jlu.edu.cn
  • 作者简介:王天皓(1988-),男,副教授,博士.研究方向:电动汽车智能网联与电磁兼容.E-mail:wangtianhao@jlu.edu.cn
  • 基金资助:
    吉林省科技发展计划项目(20230201122GX);吉林大学研究生创新研究计划项目(2022160)

Uncertainty quantification of electric vehicle's wireless power transfer efficiency based on sparse polynomial chaos expansion method

Tian-hao WANG1(),Bo LI1,Quan-yi YU1,Lin-lin XU1,Guo-qiang JIA2,Shan-shan GUAN1()   

  1. 1.College of Instrumentation and Electrical Engineering,Jilin University,Changchun 130061,China
    2.Automotive Department,China Quality Certification Centre,Beijing 100070,China
  • Received:2023-02-16 Online:2024-12-01 Published:2025-01-24
  • Contact: Shan-shan GUAN E-mail:wangtianhao@jlu.edu.cn;guanshanshan@jlu.edu.cn

摘要:

提出采用子空间追踪稀疏混沌多项式法(SP-PCE)实现EV-WPT系统传输效率的不确定性量化。首先,通过建立EV-WPT系统三维电磁学仿真模型,并合理设置相关变量的分布类型,利用SP-PCE法计算得到表征EV-WPT系统传输效率不确定性的均值、方差和概率密度曲线等统计特征参数;然后,结合SP-PCE法和Sobol法进行全局灵敏度分析,获得随机输入变量对系统传输效率影响程度的量化指标。最后,通过数值仿真实验验证了本文方法的准确性和高效性,为保证EV-WPT系统高传输效率及系统结构优化提供理论依据。

关键词: 车辆工程, 无线电能传输, 磁耦合, 不确定性量化, 稀疏混沌多项式展开法, 全局灵敏度分析

Abstract:

The subspace pursuit-polynomial chaos expansion method (SP-PCE) was proposed for the uncertainty quantification of EV-WPT system's transfer efficiency. Firstly,by establishing the three-dimensional electromagnetic simulation model of EV-WPT system and reasonably setting the distribution type of relevant variables, the statistical characteristic parameters such as mean, variance and probability density curve that can characterize the uncertainty of EV-WPT system's transfer efficiency were calculated by SP-PCE method. Then, combining the SP-PCE method and Sobol method to carry out the global sensitivity analysis to obtain the influence degree's quantitative index of random input variables on system's transfer efficiency. Finally, the accuracy and efficiency of the proposed method were verified by numerical simulation experiments, which provides a theoretical basis for ensuring the high transfer efficiency of EV-WPT system as well as system's structure optimization.

Key words: vehicle engineering, wireless power transfer, magnetic coupling, uncertainty quantification, sparse polynomial chaos expansion method, global sensitivity analysis

中图分类号: 

  • U469.72

图1

EV-WPT系统工作空间图"

图2

WPT系统电路图"

表1

常见分布类型对应的正交多项式"

分布类型变量范围概率密度函数正交多项式权函数
均匀分布[-1,+1]1/2LegendrePn(x)1
正态分布[-,+]1/2πe-x2/2HermiteHn(x)e-x2/2
指数分布[-0,+]e-xLaguerreLn(x)e-x
Gamma分布[-0,+]xαe-x/Γ(α+1)广义 Laguerre Ln(α,β)(x)xαe-x

表2

随机输入变量的分布类型"

变量分布类型分布参数
d0/m均匀分布(-0.05, 0.05)
z0/m均匀分布(-0.15, 0.15)
x0/m均匀分布(-0.15, 0.15)
s0/m2正态分布(3e-6, 1e-7)
s1/m2正态分布(3e-6, 1e-7)
C1/nF正态分布(120, 4)
C2/nF正态分布(130, 4.3)
R11正态分布(0.2, 3.3e-3)
R22正态分布(10, 0.17)

图3

MC法与OLS-PCE法传输效率概率密度曲线"

图4

MC法与SP-PCE法传输效率概率密度曲线"

图5

MC法、SP-PCE法和OLS-PCE法传输效率概率密度曲线"

表3

MC法和不同截断阶数下的SP-PCE法、OLS-PCE法所需的样本点和计算得到的相关参数结果"

不同方法和截断阶数传输效率均值/%传输效率方差计算时间/s样本点εLOO
3阶OLS-PCE84.012.69e-325 203.884400.012 7
3阶SP-PCE84.072.75e-315 133.322930.011 9
4阶OLS-PCE84.062.72e-390 662.891 4300.007 9
4阶SP-PCE84.062.70e-345 262.837150.007 7
5阶OLS-PCE84.082.75e-3253 857.114 0040.007 2
5阶SP-PCE83.982.66e-3100 972.741 6010.007 4
MC83.942.70e-3651 235.0410 000

图6

EV-WPT系统输入参数全局灵敏度指标"

图7

EV-WPT系统传输效率相关变量MOAT均值"

1 Campi T, Cruciani S, Maradei F, et al. Near-field reduction in a wireless power transfer system using LCC compensation[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 686-694.
2 徐桂芝, 李晨曦, 赵军,等. 电动汽车无线充电电磁环境安全性研究[J]. 电工技术学报, 2017, 32(22): 152-157.
Xu Gui-zhi, Li Chen-xi, Zhao Jun, et al. Electromagnetic enrironment safety study of wireless electric vehicle charging[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 152-157.
3 Wake K, Laakso I, Hirata A, et al. Derivation of coupling factors for different wireless power transfer systems: inter-and intralaboratory comparison[J]. IEEE Transactions on Electromagnetic Compatibility, 2017, 59(2): 677-685.
4 沈栋, 杜贵平, 丘东元,等. 无线电能传输系统电磁兼容研究现况及发展趋势[J]. 电工技术学报, 2020, 35(13): 2855-2869.
Shen Dong, Du Gui-ping, Qiu Dong-yuan, et al. Research Status and development trend of electromagnetic compatibility of wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2855-2869.
5 Budhia M, Boys J T, Covic G A, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328.
6 Sample A P, Meyer D A, Smith J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer[J]. IEEE Tansactions on Industrial Electronics, 2011, 58(2): 544-554.
7 Ha-Van N, Seo C. Modeling and experimental validation of a butterfly-shaped wireless power transfer in biomedical implants[J]. IEEE Access, 2019, 7: 107225-107233.
8 高大威,王硕,杨福源.电动汽车无线充电技术的研究进展[J]. 汽车安全与节能学报, 2015, 6(4): 314-327.
Gao Da-wei, Wang Shuo, Yang Fu-yuan. State-of-art of the wireless charging technologies for electric vehicles[J]. Journal of Automotive Safety and Energy, 2015, 6(4): 314-327.
9 Bang K W, Park W S, Baek P S H,et al. Evaluation of electromagnetic exposure during 85 kHz wireless power transfer for electric vehicles[J]. IEEE Transactions on Magnetics, 2017, 54(1): No.5100208.
10 Shah I A, Cho Y, Yoo H. Safety evaluation of medical implants in the human body for a wireless power transfer system in an electric vehicle[J]. IEEE Transactions on Electromagnetic Compatibility, 2021, 63(3): 681-691.
11 Assawaworrarit S, Yu X, Fan S. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit[J]. Nature Electronics, 2017, 546(7658): 387-390.
12 Larbi M, Trinchero R, Canavero F G, et al. Analysis of parameter variability in integrated devices by partial least squares regression[C]∥2020 IEEE 24th Workshop on Signal and Power Integrity, Cologne, Germany, 2020:1-4.
13 Deckmyn T, Rossi M, Ginste D V, et al. Stochastic modeling framework for wireless power transfer in the radiative near-field[C]∥2017 Wireless Power Transfer Conference,Taipei, China, 2017: No.7953833.
14 Luo Y, Yang Y, Zhang S, et al. Performance analysis and optimization of the MCR-WPT system with uncertain parameters[C]∥2020 IEEE Wireless Power Transfer Conference, Seoul, Korea (South), 2020: 154-158.
15 Lagouanelle P, Krauth V L, Pichon L. Uncertainty quantification in the assessment of human exposure near wireless power transfer systems in automotive applications[C]∥2019 International Conference of Electrical and Electronic Technologies for Automotive, Turin, Italy, 2019:No. 8804593.
16 于全毅,刘长英,吴定超,等. 基于广义混沌多项式法的多导体传输线辐射敏感度分析方法[J]. 电工技术学报, 2020, 35(17): 3591-3600.
Yu Quan-yi, Liu Chang-ying, Wu Ding-chao, et al. Radiation sensitivity analysis of multiconductor transmission lines based on generalized polynomial chaos method[J]. Transactions of China Electrotechnical Society, 2020, 35(17): 3591-3600.
17 Lu C H, Wu Z Y. Uncertainty quantification of the 1-D SFR thermal stratification model via the latin hypercube sampling Monte Carlo method[J].Nuclear Technology,2022, 208(1): 37-48.
18 Diaz P, Doostan A, Hampton J. Sparse polynomial chaos expansions via compressed sensing and D-optimal design[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 336(1): 640-666.
19 Lüthen N, Marelli S, Sudret B. Sparse polynomial chaos expansions: literature survey and benchmark[J]. SIAM/ASA Journal on Uncertainty Quantification, 2020, 9(2): 593-649.
20 Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory, 2009, 55(5): 2230-2249.
[1] 李寿涛,杨路,屈如意,孙鹏鹏,于丁力. 基于模型预测控制的滑移率控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2687-2696.
[2] 吴量,顾义凡,邢彪,马芳武,倪利伟,贾微微. 基于线性二次型调节器的四轮转向与分布式集成控制方法[J]. 吉林大学学报(工学版), 2024, 54(9): 2414-2422.
[3] 王玉海,李晓之,李兴坤. 面向高速工况的混合动力卡车预见性节能算法[J]. 吉林大学学报(工学版), 2024, 54(8): 2121-2129.
[4] 常胜,刘宏飞,邹乃威. 汽车变曲率路径循迹H回路成形鲁棒控制[J]. 吉林大学学报(工学版), 2024, 54(8): 2141-2148.
[5] 刘建泽,柳江,李敏,章新杰. 基于最小二乘的车速解耦路面辨识方法[J]. 吉林大学学报(工学版), 2024, 54(7): 1821-1830.
[6] 谢宪毅,张明君,金立生,周彬,胡涛,白宇飞. 考虑舒适度的智能汽车人工蜂群轨迹规划方法[J]. 吉林大学学报(工学版), 2024, 54(6): 1570-1581.
[7] 刘从臻,陈高,刘洪柱,马强,徐成伟,孟辉,王国林. 湿滑路面轮胎接地力学特性模型[J]. 吉林大学学报(工学版), 2024, 54(6): 1501-1511.
[8] 黄玲,崔躜,游峰,洪佩鑫,钟浩川,曾译萱. 适用于多车交互场景的车辆轨迹预测模型[J]. 吉林大学学报(工学版), 2024, 54(5): 1188-1195.
[9] 郭洪艳,王连冰,赵旭,戴启坤. 考虑侧向运动的整车质量与道路坡度估计[J]. 吉林大学学报(工学版), 2024, 54(5): 1175-1187.
[10] 陆玉凯,袁帅科,熊树生,朱绍鹏,张宁. 汽车漆面缺陷高精度检测系统[J]. 吉林大学学报(工学版), 2024, 54(5): 1205-1213.
[11] 汪少华,张启睿,施德华,殷春芳,李春. 双行星排式混合动力传动系统非线性振动响应特性分析[J]. 吉林大学学报(工学版), 2024, 54(4): 890-901.
[12] 高镇海,蔡荣贵,孙天骏,于桐,赵浩源,班浩. 人机共驾下的驾驶行为数据滤波方法[J]. 吉林大学学报(工学版), 2024, 54(3): 589-599.
[13] 谢宪毅,王禹涵,金立生,赵鑫,郭柏苍,廖亚萍,周彬,李克强. 基于改变控制时域时间步长的智能车轨迹跟踪控制[J]. 吉林大学学报(工学版), 2024, 54(3): 620-630.
[14] 邓小林,杨馥模,覃善甘. 新型仿竹六边形梯度层级多胞管耐撞性对比分析[J]. 吉林大学学报(工学版), 2024, 54(2): 333-345.
[15] 王毅刚,王玉鹏,张昊,赵思安. 高速列车转向架区域气动噪声源识别与分析[J]. 吉林大学学报(工学版), 2024, 54(2): 346-355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .