吉林大学学报(工学版) ›› 2025, Vol. 55 ›› Issue (1): 125-131.doi: 10.13229/j.cnki.jdxbgxb.20230228

• 材料科学与工程 • 上一篇    下一篇

铝合金LF21微铣削顶端毛刺尺寸预测与工艺优化

卢晓红(),洛家庆,丛晨,徐凯   

  1. 大连理工大学 高性能精密制造全国重点实验室,辽宁 大连 116024
  • 收稿日期:2023-02-28 出版日期:2025-01-01 发布日期:2025-03-29
  • 作者简介:卢晓红(1978-),女,教授,博士. 研究方向:精密加工及微加工技术,加工过程及FSW过程测控技术,计算机辅助设计、制造与测试. E-mail: lxhdlut@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(52275410)

Prediction of top burr size and optimization of process parameters in micro-milling aluminum alloy LF21

Xiao-hong LU(),Jia-qing LUO,Chen CONG,Kai XU   

  1. State Key Laboratory of High-performance Precision Manufacturing,Dalian University of Technology,Dalian 116024,China
  • Received:2023-02-28 Online:2025-01-01 Published:2025-03-29

摘要:

铝合金LF21屈服强度低,易发生塑性变形,微铣削加工过程中易产生毛刺,其中顶端毛刺的尺寸往往最大,对零件质量的影响最大,严重时甚至导致零件报废。目前,LF21铝合金微铣削加工顶端毛刺研究处于起步阶段,毛刺尺寸难以准确预测,加工参数对毛刺尺寸的影响规律未知。本文基于响应曲面法建立了LF21铝合金微铣削顶端毛刺尺寸预测模型,并通过试验验证了该模型的有效性,基于响应曲面法探究了切削工艺参数对顶端毛刺尺寸交互作用的影响。最后,以铝合金LF21微铣削顶端毛刺尺寸最小为目标,实现了工艺参数优化。

关键词: 微铣削, 铝合金LF21, 顶端毛刺, 预测模型, 工艺优化

Abstract:

Aluminum alloy LF21 has low yield strength and is prone to plastic deformation, and is easy to produce burrs in micro-milling process. The size of the top burr is the largest, which has a great impact on the quality of the parts, and even causes the parts to be scrapped in severe cases. At present, the research on LF21 micro-milling burr has just started. Burr size is difficult to predict accurately, and the influence of processing parameters on burr size is still unknown. A prediction model of top burr size based on response surface method is established, and experiments are conducted to verify the validity of the prediction model. Based on response surface method, the interaction effect of cutting process parameters on top burr size is investigated. Finally, the optimization of process parameters is realized with the aim of minimizing the top burr size of micro-milling aluminum alloy LF21.

Key words: micro-milling, aluminum alloy LF21, top burr, prediction mode, parameters optimization

中图分类号: 

  • TH161.5

表1

铝合金LF21物理特性"

密度/

(kg·m-3

屈服极限/MPa弹性极限/MPa弹性模量/GPa
2 740429768.6

表2

铝合金LF21化学成分"

元素SiTiMnFeCuZnMg
占比/%0.600.1~0.21.0~1.60.70.20.150.05

表3

基于响应曲面法的试验设计及结果"

序号

n

/(r·min-1

ap

/μm

ae

/μm

fz

/(μm·z-1

l/μm
160 00080500.945.58
260 00080500.932.32
380 00080500.932.82
470 00050401.0535.89
570 000110401.0530.72
650 000110601.0534.78
750 00050600.7534.69
860 00080300.939.57
950 00050401.0538.16
1060 00080500.938.74
1170 000110601.0538.20
1260 00080700.935.53
1360 00020500.933.71
1470 00050600.7535.40
1550 00050601.0545.81
1660 00080501.253.64
1750 00050400.7536.97
1850 000110400.7547.22
1940 00080500.945.05
2060 000140500.924.18
2150 000110600.7530.02
2260 00080500.633.72
2370 00050400.7538.49
2460 00080500.932.55
2570 000110600.7537.09
2650 000110401.0544.14
2770 000110400.7549.62
2860 00080500.935.43
2960 00080500.930.95
3070 00050601.0556.04

图1

铝合金LF21微铣削试验件"

图2

顶端毛刺尺寸测量"

表4

多元回归模型方差分析表"

方差

来源

平方和自由度均方FP显著性
模型1 169.861961.5714.35< 0.000 1***
A-n36.04136.048.400.015 9**
B-ap17.02117.023.970.074 4*
C-ae32.62132.627.600.020 2**
D-fz69.87169.8716.280.002 4***
AB4.5514.551.060.327 2*
AC30.64130.647.140.023 4**
AD7.2917.291.700.221 5*
BC28.24128.246.580.028 1**
BD19.14119.144.460.060 8*
CD30.36130.367.070.023 9**
A251.85151.8512.080.006 0***
B2667.541667.54155.58< 0.000 1***
C258.15158.1513.550.004 2***
D2127.001127.0029.600.000 3***
ACD25.89125.896.030.033 9**
A2B70.31170.3116.390.002 3***
A2C56.75156.7513.230.004 6***
A2D22.80122.805.310.043 9**
AB250.66150.6611.810.006 4***
失拟度27.02955.411.700.286 7*
纯误差15.8853.18

图3

残差的正态概率图"

图4

实际值与预测值"

表5

毛刺尺寸模型预测值与测量值对比"

序号n/(r·min-1ap/μmae/μmfz /(μm·z-1试验测量/μm预测结果/μm相对误差/%
150 00050701.035.633.485.9%
260 00080501.242.8944.644.0%
370 000110300.835.9233.436.9%

图5

切削参数对顶端毛刺尺寸的影响"

图6

切削工艺参数对顶端毛刺尺寸交互作用影响的响应曲面图"

1 Hashimura M, Hassamontr J, Dornfeld D A. Effect of in-plane exit angle and rake angles on burr height and thickness in face milling operation[J]. Trans ASME J Manuf Sci Eng, 1999(121):13-19.
2 Gillespie A. The formation and properties of machining burrs[J]. Journal of Manufacturing Science and Engineering, 1976(98):66-74.
3 Kiswanto G, Zariatin D L, Ko T J.The effect of spindle speed, feed-rate and machining time to the surface roughness and burr formation of aluminum alloy 1100 in micro-milling operation[J]. Journal of Manufacturing Processes, 2014(16):435-450.
4 石文天,侯岩军,刘玉德,等. 微切削毛刺形成机理及研究进展综述[J]. 中国机械工程, 2019, 30(23): 2809-2819, 2828.
Shi Wen-tian, Hou Yan-jun, Liu Yu-de, et al. Overview on formation mechanism and research progresses of burrs in micro cutting[J]. China Mechanical Engineering, 2019, 30(23): 2809-2819, 2828.
5 Kuram E, Ozcelik B, Bayramoglu M, et al. Optimization of cutting fluids and cutting parameters during end milling by using D-optimal design of experiments[J]. Journal of Cleaner Production, 2013, 42(3): 159-166.
6 Vipindas K, Kuriachen B, Jose Mathew. Investigations into the effect of process parameters on surface roughness and burr formation during micro end milling of Ti-6Al-4V[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(5-8):1207-1222.
7 Chen N, Zhang X, Wu J, et al. Suppressing the burr of high aspect ratio structure by optimizing the cutting parameters in the micro-milling process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(3-4):1-13.
8 Mohan K, Vivek B.Experimental investigation of top burr formation in high-speed micro-milling of Ti6Al4V alloy[J]. Journal of Engineering Manufacture, 2019, 234(4):730-738.
9 张志阳,袁振剑,王贵成,等. 切削参数对微铣毛刺尺寸影响的试验研究[J]. 工具技术, 2017, 51(7): 56-59.
Zhang Zhi-yang, Yuan Zhen-jian, Wang Gui-cheng, et al. Experimental study on parameters governing burr dimension in micro-milling[J]. Tools technology, 2017, 51(7): 56-59.
10 孙秋莲. 微细铣削工件毛刺及其抑制方法研究[D].淄博: 山东理工大学机械工程学院, 2019.
Sun Qiu-lian. Study of burrs on workpieces and its inhibition method in micromilling[D]. Zibo: School of Meahanical Engineering, Shandong University of Technology, 2019.
[1] 马洁,刘智丽,王书灵,董皓. 轨道交通车站出入口客流预测——以北京市为例[J]. 吉林大学学报(工学版), 2024, 54(8): 2197-2205.
[2] 朱国庆,刘显成,田从祥. 基于长短期记忆网络的公共建筑短期能耗预测模型[J]. 吉林大学学报(工学版), 2024, 54(7): 2009-2014.
[3] 姬会爽,彭艳,刘洋,杨彦博,高鲲,尔立民. SCR生产线结晶腔铜液凝固行为及质量控制[J]. 吉林大学学报(工学版), 2021, 51(6): 2021-2030.
[4] 方宇,孙立军. 基于生存分析的城市桥梁使用性能衰变模型[J]. 吉林大学学报(工学版), 2020, 50(2): 557-564.
[5] 王鹏辉,乔宏霞,冯琼,曹辉,温少勇. 氯氧镁涂层钢筋混凝土两重因素耦合作用下的耐久性模型[J]. 吉林大学学报(工学版), 2020, 50(1): 191-201.
[6] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[7] 吕萌萌, 谷诤巍, 徐虹, 李欣. 超高强度防撞梁热冲压成形工艺优化[J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[8] 刘宇, 李鹏飞, 张义民. 紫铜薄壁零件微铣加工变形分析及预测[J]. 吉林大学学报(工学版), 2017, 47(3): 844-849.
[9] 马知行, 赵琦, 张浩. 基于傅立叶分析的持家基因预测模型[J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643.
[10] 郭洪强, 何洪文, 卢兵. 电动汽车复合制动预测模型[J]. 吉林大学学报(工学版), 2015, 45(3): 696-702.
[11] 袁媛, 张焕杰, 苗雨田, 吴思佳, 林松毅, 刘静波. 鲜切薯片油炸过程中丙烯酰胺形成的贡献率[J]. 吉林大学学报(工学版), 2014, 44(5): 1525-1530.
[12] 高振海, 吴涛, 赵会. 车辆虚拟跟随避撞中驾驶人制动时刻模型[J]. 吉林大学学报(工学版), 2014, 44(5): 1233-1239.
[13] 王宝杰, 王炜, 杨敏, 华雪东. 基于Kalman滤波行程时间预测的BRT车速诱导[J]. 吉林大学学报(工学版), 2014, 44(01): 41-46.
[14] 司建波, 杨芳, 郭蔚莹, 姚燕. 基于BP神经网络的两阶段疾病预测模型[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 481-484.
[15] 张铁华, 李玺, 叶海青, 车宇飞, 田路, 于亚莉. 发酵林蛙油饮品的研制及工艺优化[J]. 吉林大学学报(工学版), 2013, 43(06): 1719-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!