吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (3): 718-725.doi: 10.13229/j.cnki.jdxbgxb201403023

• 论文 • 上一篇    下一篇

板球系统自适应解耦滑模控制

韩京元1,2,田彦涛1,3,孔英秀4,张英慧1,李津淞1   

  1. 1.吉林大学 通信工程学院,长春 130022;
    2.理科大学 控制科学系,朝鲜 平壤 526890;
    3.吉林大学 工程仿生教育部重点实验室,长春 130022;
    4. 吉林大学 机械科学与工程学院,长春 130022
  • 收稿日期:2013-03-20 出版日期:2014-03-01 发布日期:2014-03-01
  • 通讯作者: 田彦涛(1958),男,教授,博士生导师.研究方向:复杂系统建模与优化控制,分布式智能系统与网络控制.E-mail:tianyt@jlu.edu.cn E-mail:hankw11@163.com
  • 作者简介:韩京元(1973),男,博士研究生.研究方向:控制工程学,智能控制.E-mail:hankw11@163.com
  • 基金资助:
    高等学校博士学科点专项科研基金项目(20060183006);国家自然科学基金项目(60974067);吉林大学“985工程”仿生科技创新平台项目.

Adaptive decoupled sliding mode control for the ball and plate system

HAN Kyong-won1,2, TIAN Yan-tao1,3, KONG Yong-su4, ZHANG Ying-hui1, LI Jin-song1   

  1. 1.College of Communication Engineering, Jilin University, Changchun 130022, China;
    2.Department of Control Science,University of Science, Pyongyang 526890, DPRK;
    3.Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China;
    4. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2013-03-20 Online:2014-03-01 Published:2014-03-01

摘要: 针对非线性板球系统中小球的镇定和跟踪控制问题,提出了一种采用结合系数的自适应解耦模糊滑模控制器设计方法。将板球系统分解成4个子系统,分别对每个子系统定义了滑模面,利用结合系数将滑模面结合,基于Lyapunov稳定性理论,构造了自适应模糊规则来调节滑模结合系数,从而实现了板球系统的稳定控制,并避免了复杂的计算。本文对所提出的控制方法进行了板球系统的仿真实验验证。仿真结果表明,此方法能够较好地实现非线性不确定系统的镇定控制和轨迹跟踪问题。

关键词: 自动控制技术, 板球系统, 滑模控制, 自适应模糊逻辑, 镇定控制, 轨迹跟踪控制

Abstract: A design method of decoupling adaptive sliding mode controller unsing integrated factor is proposed for trajectory tracking and stabilization control of the Ball and Plate System (BPS). In this approach, the nonlinear system is decomposed to four subsystems and the state response of each subsystem is designed by a corresponding sliding surface. In the design, the integrated factor is adopted to combine the sliding surface, which is decided by an adaptive fuzzy algorithm based on the Lyapunov stability theory. Thus the stability of the system is guaranteed and the complex calculation is avoided. The proposed design method is applied to investigate Ball and Plate Vision System. The simulation results demonstrate that the proposed approach is effective in resolving the stabilization control and trajectory tracking control tasks of nonlinear and under-actuated system with uncertain terms.

Key words: automatic technology, ball and plate system, sliding mode, adaptive fuzzy control, stabilization control, trajectory tracking control

中图分类号: 

  • TP273
[1] Tian Yan-tao, Bai Ming, Su Jin-tao. A non-linear switching controller for ball and plate system[J]. International Journal of Modelling, Identification and Control,2006,1(3):177-182.
[2] 王红睿, 田彦涛. 一类欠驱动系统的非线性输出跟踪控制[J]. 控制与决策,2011,26(6):953-956.
Wang Hong-rui, Tian Yan-tao. Nonlinear output tracking control for a class of underactuated system[J].Control and Decision,2011,26(6):953-956.
[3] 王红睿,田彦涛,隋振.板球系统的非线性摩擦补偿控制[J].吉林大学学报:工学版, 2010,40(3): 788-794.
Wang Hong-rui, Tian Yan-tao, Sui Zhen. Nonlinear control for friction compensation of ball and plate system[J]. Journal of Jilin University(Engingeering and Technology Edition),2010,40(3):788-794.
[4] Han Kyong-won, Tain Yan-tao, Kong Yong-su, et al. Tracking control of ball and plate system using a improved PSO on-line training PID neural network[C]∥IEEE Int Conf Mechatronics Autom, ICMA, 2012,12:2297-2302.
[5] John Hauser, Shankar Sastry, Petar Kokotovic. Nonlinear control via approximate input-output linearization the ball and beam example[J]. IEEE Transaction on Automatic Control, 1992: 392-398.
[6] 滕树杰, 张乃尧, 范醒哲. 板球系统的T-S模糊多变量控制方案[J]. 信息与控制, 2002, 31(3): 268-271.
Teng Shu-jie, Zhang Nai-yao, Fan Xing-zhe. T-S model based fuzzy multivariable control scheme for ball and plate system[J]. Information and Control, 2002, 31(3): 268-271.
[7] Fan Xing-zhe, Zhang Nai-yao, Teng Shu-jie. Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme[J]. Fuzzy Sets and Systems, 2003, 144:297-312.
[8] 王红睿, 田彦涛. 板球系统的参数自调整反步控制[J]. 控制与决策, 2009, 24(5): 749-753.
Wang Hong-rui, Tian Yan-tao. Backstepping control with automatic tuning parameters for ball and plate system[J]. Control and Decision, 2009, 24(5): 749-753.
[9] 李玮, 段建民, 龚建伟. 外扰已知时滞不确定系统自适应滑模控制[J]. 吉林大学学报:工学版, 2011, 41(1): 249-253.
Li Wei, Duan Jian-min, Gong Jian-wei. Adaptive sliding mode control for uncertain systems with state time-delay and known external disturbance[J]. Journal of Jilin University (Engingeering and Technology Edition),2011,41(1):249-253.
[10] Duan Hui-da, Tian Yan-tao, Liu De-jun. Design of sliding mode control based on Nonlinear observer for Nonlinear System[J]. Applied Materials,2012,109:541-546.
[11] Tomlin C J, Sastry S S. Switching through singularities[J]. Systems and Control Letters,1998,35:145-154.
[12] Yubazaki Naoyoahi, Yi Jian-qiang, Otani Masayuki,et al.Trajectory tracking control of unconstrained objects based on the SIRMs dynamically connected fuzzy inference model[C]∥Piscataway: IEEE ICFS,1997:609-614.
[13] Matsuo Takami, Tsuruta Kenshi, Suemitsu Haruo. Fuzzy adaptive identification method based on Riccati equation and its application to ball-plate control system[C]∥IEEE ICSMC,1999,6:162-167.
[14] Wang Li-xin. Adaptive Fuzzy Systems and Control: Design and Stability Analysis[M]. Englewood Cliffs, NJ: Prentice-Hall, 1994.
[15] Hung Jhon Y, Gao Wei-bing, Hung James C. Variable structure control: A survey[J]. IEEE Trans Ind Electron, 1993,40(1):2-22.
[16] Bai Ming, Tian Yan-tao, Wang Yong-xiang. Decoupled fuzzy sliding mode control to ball and plate system[C]∥The 2nd ICICIP, 2011:686-691.
[17] 祖丽楠, 李江抒, 田彦涛. 旋转倒立摆平衡姿态多模型模糊控制算法[J]. 吉林大学学报:工学版,2003,33(4):85-90.
Zu Li-nan, Li Jiang-shu, Tian Yan-tao. Multi-model fuzzy control algorithm for balancing of rotation inverted-pendulum[J]. Journal of Jilin University (Engingeering and Technology Edition),2003,33(4):85-90.
[18] Jacob S Glower, Jeffrey Munighan. Designing fuzzy controllers from a variable structures standpoint[J]. IEEE Transactions on Fuzzy System,1997:138-144.
[19] Lo J-chang, Kuo Ya-hui. Decoupled fuzzy sliding-mode control[J]. IEEE Trans Fuzzy Systems, 1998,6(3):426-435.
[20] Chen Shi-yuan, Yu Fang-ming, Chung Hung-yuan. Decoupled fuzzy controller design with single-input fuzzy logic[J]. Fuzzy Sets and Systems,2002,129:335-342.
[21] Watanabe Keigo, Tang Jun, Nakamura Masatoshi, et al. A fuzzy-Gaussian neural network and its application to mobile robot control[J]. IEEE Trans. Control Syst Technol,1996,4(2):193-199.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 姜继海, 葛泽华, 杨晨, 梁海健. 基于微分器的直驱电液伺服系统离散滑模控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1492-1499.
[5] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[6] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[7] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[8] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[9] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[10] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[11] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[12] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[13] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[14] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[15] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!