吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1051-1056.doi: 10.13229/j.cnki.jdxbgxb201404023

• • 上一篇    下一篇

压机的调平和跟踪控制

吴爱国, 杨硕, 张涵, 李长滨   

  1. 天津大学 电气与自动化工程学院, 天津 300072
  • 收稿日期:2013-02-01 出版日期:2014-07-01 发布日期:2014-07-01
  • 作者简介:吴爱国(1954-), 男, 教授, 博士生导师.研究方向:非线性系统的控制算法及应用. E-mail:agwu@tju.edu.cn
  • 基金资助:
    国家科技重大专项项目(2009ZX04004-031)

Leveling and tracking control of multi-cylinder forging hydraulic press

WU Ai-guo, YANG Shuo, ZHANG Han, LI Chang-bin   

  1. School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, China
  • Received:2013-02-01 Online:2014-07-01 Published:2014-07-01

摘要: 针对多缸锻造液压机系统, 在考虑不确定大负载和多缸耦合的情况下建立了非线性系统数学模型。采用广义逆的控制分配方法解决液压缸过驱动问题, 进而提出一种二级非线性控制器设计方案。该控制器内环级采用李雅普诺夫直接法控制4个单输入单输出的液压缸压力系统, 实现对期望压力的精确快速跟踪;外环级则针对带不确定大负载的多输入多输出系统, 采用自适应控制策略并结合控制分配理论获得各缸期望压力。仿真和实验结果表明, 该控制策略优于采用滑模变结构方法的单控制器策略, 实现了低速运行下的高精度调平和跟踪控制。

关键词: 自动控制技术, 液压缸过驱动, 控制分配, 锻造液压机模型, 自适应控制

Abstract: A nonlinear mathematic model for multi-cylinder forging hydraulic press system is established, in which the uncertainty of large load and the coupling of multi-cylinder is taken into consideration. The over actuation of the hydraulic cylinder is solved using control allocation method based on generalized inverse. Then a two-level nonlinear controller is proposed to solve the above problems. Employing Lyapunov Direct Method, the inner-loop controller controls the four SISO hydraulic cylinder pressure system to achieve accurate and fast tracking for the desired pressure. To control the uncertain large load MIMO system, the out-loop controller is designed using adaptive control strategy, with reference to the control allocation theory, to obtain the desired pressure of each cylinder. Simulation and experiment demonstrate that the strategy proposed is better than the sliding mode variable structure control strategy with single controller, and high-accuracy of the leveling and tracking control under slow running can be achieved.

Key words: automatic control technology, hydraulic cylinder overactuated, control allocation, hydraulic forging press model, adaptive control

中图分类号: 

  • TP273
[1] Cho S J, Lee J C, Jeon Y H, et al. The development of a position conversion controller for hydraulic press systems[C]∥IEEE International Conference on Robotics and Biomimetics, Guilin, China, 2009: 2019-2022.
[2] Chen M, Huang M H, Zhou Y C, et al.Synchronism control system of heavy hydraulic press[C]∥IEEE International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 2009:17-19.
[3] Claude Kaddissi, Jean-Pierre Kenne, Maarouf Saad. Indirect adaptive control of an electrohydraulic servo system based on nonlinear backstepping[J].IEEE Transactions on Mechatronics, 2011, 16(6):1171-1177.
[4] UrsI U, Ursu F, Popescu F. Backstepping design for controlling electrohydraulic servos[J]. Journal of the Franklin Institute, 2006, 343: 94-110.
[5] 贾超, 吴爱国, 郑爱红. 一类多缸液压机的分散滑模控制[J]. 仪器仪表学报, 2012, 33(7):1513-1520. Jia Chao, Wu Ai-guo, Zheng Ai-hong. Decentralised sliding mode control for a class of multi-cylinder hydraulic press[J]. Chinese Journal of Scientific Instrument, 2012, 33(7): 1513-1520.
[6] Guan Cheng, Pan Shuang-xia. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters[J]. Control Engineering Practice, 2008, 16(11): 1275-1284.
[7] Huerta H, Loukianov A G, Canedo J M. Decentralized sliding mode block control of multimachine power systems[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(1):1-11.
[8] Utkin V, Lee H. Chattering problem in sliding mode control system[C]∥Proceedings of the 2006 International Workshop on Variable Structure Systems, Alghero, Sardinia, 2006:346 -350.
[9] Hong S, Chiug T C. Motion synchronization for dual-cylinder electrohydraulic lift systems[J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(2): 171-181.
[10] Alwi H, Edwards C H. Fault tolerant control using sliding modes with on-line control allocation[J]. Automatica, 2008, 44(7):1859-1866.
[11] Johansen T A, Fuglset T P, Tondel P, et al. Optimal constrained control allocation in marine surface vessels with rudders[J]. Control Engineering Practice, 2008, 16(4): 457-464.
[12] Wang Jun-min, Longoria Raul G. Coordinated and reconfigurable vehicle dynamics control[J]. IEEE Transactions on Control Systems Technology, 2009, 17(3):723-732.
[13] 贾超, 吴爱国. 基于李雅普诺夫直接法的电液伺服系统控制[J]. 吉林大学学报:工学版, 2012, 42(3): 696-701. Jia Chao, Wu Ai-guo. Control method for electro-hydraulic servo system based on Lyapunov direct method[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(3): 696-701.
[1] 顾万里,王萍,胡云峰,蔡硕,陈虹. 具有H性能的轮式移动机器人非线性控制器设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1811-1819.
[2] 李战东,陶建国,罗阳,孙浩,丁亮,邓宗全. 核电水池推力附着机器人系统设计[J]. 吉林大学学报(工学版), 2018, 48(6): 1820-1826.
[3] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[4] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[5] 闫冬梅, 钟辉, 任丽莉, 王若琳, 李红梅. 具有区间时变时滞的线性系统稳定性分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1556-1562.
[6] 张茹斌, 占礼葵, 彭伟, 孙少明, 刘骏富, 任雷. 心肺功能评估训练系统的恒功率控制[J]. 吉林大学学报(工学版), 2018, 48(4): 1184-1190.
[7] 董惠娟, 于震, 樊继壮. 基于激光测振仪的非轴对称超声驻波声场的识别[J]. 吉林大学学报(工学版), 2018, 48(4): 1191-1198.
[8] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[9] 张士涛, 张葆, 李贤涛, 王正玺, 田大鹏. 基于零相差轨迹控制方法提升快速反射镜性能[J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[10] 王林, 王洪光, 宋屹峰, 潘新安, 张宏志. 输电线路悬垂绝缘子清扫机器人行为规划[J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[11] 胡云峰, 王长勇, 于树友, 孙鹏远, 陈虹. 缸内直喷汽油机共轨系统结构参数优化[J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[12] 朱枫, 张葆, 李贤涛, 王正玺, 张士涛. 基于强跟踪卡尔曼滤波的陀螺信号处理[J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[13] 晋超琼, 张葆, 李贤涛, 申帅, 朱枫. 基于扰动观测器的光电稳定平台摩擦补偿策略[J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[14] 冯建鑫. 具有测量时滞的不确定系统的递推鲁棒滤波[J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[15] 许金凯, 王煜天, 张世忠. 驱动冗余重型并联机构的动力学性能[J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!