吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 719-725.doi: 10.13229/j.cnki.jdxbgxb201503006

• • 上一篇    下一篇

基于振动控制的客车地板模态分析及结构优化

柯俊1, 陈志勇1, 史文库1, 施腾1, 张一京2, 郭福祥2   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022;
    2. 南京汽车集团有限公司 产品工程部,南京 210028
  • 收稿日期:2013-12-09 出版日期:2015-05-01 发布日期:2015-05-01
  • 通讯作者: 陈志勇(1980-),男,讲师,博士.研究方向:汽车系统动力学.E-mail:wosczy@163.com E-mail:coolkejun@163.com
  • 作者简介:柯俊(1989-),男,博士研究生.研究方向:汽车系统动力学.
  • 基金资助:
    国家自然科学基金项目(51205158); 吉林大学研究生创新基金项目(450060503159)

Modal analysis and structure optimization of bus floor based on floor vibration control

KE Jun1, CHENG Zhi-yong1, SHI Wen-ku1, SHI Teng1, ZHANG Yi-jing2, GUO Fu-xiang2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China;
    2.Product Engineering Department,Nanjing Automobile Group Co., Ltd., Nanjing 210028,China
  • Received:2013-12-09 Online:2015-05-01 Published:2015-05-01

摘要: 为了控制某轻型客车的地板后部在高速行驶工况中的剧烈振动,利用阶次跟踪方法和模态分析方法分析得出地板发生剧烈振动的原因是发动机和传动系的激励频率与地板后部局部鼓包模态的模态频率接近,进而发生了共振。采用HyperWorks软件建立了某轻型客车的车身车架有限元模型,利用HyperWorks软件的OptiStruct模块对地板各横梁板材的厚度进行模态灵敏度分析及尺寸优化,根据相关的分析结果设计了结构优化方案并进行了验证试验。试验结果表明,本文方法可以有效地控制地板的剧烈振动。

关键词: 车辆工程, 客车地板振动, 模态分析, 灵敏度分析, 结构优化

Abstract: The rear area of the floor of light bus experiences severe vibration under high speed working condition. In order to solve this problem, order tracking analysis and modal analysis of the floor were performed to identify the root cause. It was found that the excitation frequencies of the engine and transmission system are overlapped with the modal frequencies of the floor, which has some local bump modals, resulting in resonance. A finite element model, including the body and frame of the floor, was established using HyperWorks software. Model sensitivity analysis and size optimization of the thickness of floor the beams were carried out using the OptiStruct module in HyperWorks. Then an optimal scheme was designed according to the finite element analysis results and the verification test was conducted. The test results demonstrate that the investigation method and the proposed optimal scheme can effectively control the severe vibration of the floor with low cost.

Key words: vehicle engineering, bus floor vibration, modal analysis, sensitivity analysis, structural optimization

中图分类号: 

  • U463.82
[1] 林逸,马天飞,姚为民. 汽车NVH特性研究综述[J]. 汽车工程,2002,24(3):177-181.
Lin Yi ,Ma Tian-fei,Yao Wei-min. The summary of study on vehicle NVH performance[J]. Automotive Engineering,2002,24(3):177-181.
[2] 庞剑,湛刚,何华. 汽车噪声与振动:理论与应用[M]. 北京:北京理工大学出版社,2006:1-10.
[3] 任春. 乘用车的振动分析与地板优化研究[D]. 长春:吉林大学汽车工程学院,2011.
Ren Chun. Vibration analysis and floor optimization
4 of a passenger car[D].Changchun: College of Automotive Engineering,Jilin University,2011.
[4] Blough J R,Gwaltney G. Post-processing analysis of large channel count order track tests and estimation of linearly independent operating shapes[C]∥SAE Technical Papers,1999-01-1827.
[5] Hamilton D. Frequency domain considerations in vehicle design for optimal structural feel[C]∥SAE Technical Papers,2000-01-1344.
[6] 陈志勇,史文库,沈志宏,等. 轻型客车车身车架整体结构有限元模态分析[J].振动与冲击,2010,29(10):244-246.
Chen Zhi-yong,Shi Wen-ku,Shen Zhi-hong,et al. Modal analysis for body and frame of a light-type bus[J].Journal of Vibration and Shock,2010,29(10):244-246.
[7] Dooms D,Degrande G,De Roeck G,et al. Finite element modeling of a silo based on experimental modal analysis[J]. Engineering Structures,2006,28(4):532-542.
[8] 邬广铭,史文库,刘伟,等. 基于模态灵敏度分析的客车车身优化[J]. 振动与冲击,2013,32(3):41-45.
Wu Guang-ming,Shi Wen-ku,Liu Wei,et al. Structural optimization of a light bus body-in-white based on modal sensitivity analysis[J].Journal of Vibration and Shock,2013,32(3):41-45.
[9] 张胜兰,郑冬黎,郝琪,等. 基于HyperWorks的结构优化设计技术[M]. 北京:机械工业出版社,2007:260-276.
[10] Kim Y D,Jeong J E,Park J S,et al. Optimization of the lower arm of a vehicle suspension system for road noise reduction by sensitivity analysis[J]. Mechanism and Machine Theory,2013,69:278-302.
[11] Akihiro T,Mitsuru K. Sensitivity analysis and optimization of vibration modes in continuum systems[J]. Journal of Sound and Vibration,2013,332(6):1553-1566.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!