吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (1): 92-99.doi: 10.13229/j.cnki.jdxbgxb201601014

• • 上一篇    下一篇

基于平均策略的城市轨道交通动态O-D矩阵估计

姚向明, 赵鹏, 禹丹丹   

  1. 北京交通大学 交通运输学院,北京 100044
  • 收稿日期:2014-06-21 出版日期:2016-01-30 发布日期:2016-01-30
  • 通讯作者: 赵鹏(1967-),男,教授,博士生导师.研究方向:交通运输规划与管理.E-mail:pzhao@bjtu.edu.cn
  • 作者简介:姚向明(1987-),男,在站博士后.研究方向:轨道交通规划与管理.E-mail:yaoxm@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51478036)

Dynamic origin-destination matrix estimation for urban rail transit based on averaging strategy

YAO Xiang-ming, ZHAO Peng, YU Dan-dan   

  1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
  • Received:2014-06-21 Online:2016-01-30 Published:2016-01-30

摘要: 基于最小二乘方法建立了一种滑动平均策略下的动态O-D(origin-destination)矩阵估计模型。通过对自动售检票数据统计分析,发现历史与当前客流的分布结构在连续时段内具有内在关联性,以此引入滑动平均策略来有效利用多个时段的客流信息,构建基于平均策略的动态O-D矩阵估计模型。定义基于O-D行程时间分布特征的客流到达系数,从而有效刻画交通流的动态特性,建立O-D流量与车站进出站客流量之间的影响关系。最后,以北京市轨道交通为对象进行案例分析,结果表明:从全日平均相对误差角度分析,模型估计精度提高约15%~20%,即有效提高城市轨道交通在较短时间范围内O-D矩阵估计精度。

关键词: 交通运输系统工程, 动态O-D矩阵估计, 最小二乘法, 城市轨道交通, 滑动平均策略

Abstract: A dynamic Origin-Destination (O-D) matrix model based on least square approach is proposed for urban rail transit using moving-average strategy. Statistic analysis of historic automatic fare collection records shows that, in continuous periods, there is a strong average O-D flow relevance between priori passenger flow and current passenger flow. Therefore, a dynamic O-D matrix estimation model is established based on moving-average strategy. This model can utilize the priori flow information more efficiently. A passenger flow arrival coefficient based on the distribution of O-D travel time is defined to characterize the dynamics of traffic flow, thus establishing the relationship between O-D flow and in-and-out flow at stations. Finally, a case analysis of Beijing rail transit network is carried out. Results show that, comparing with existing model, the accuracy of the proposed model is improved about 15%~20% from the viewpoint of average relative deviation in a day. The proposed model can improve the accuracy of dynamic O-D matrix estimation in short time range for urban rail transit greatly.

Key words: engineering of communications and transportation system, dynamic O-D matrix estimation, the least square approach, urban rail transit, moving-average strategy

中图分类号: 

  • U239.5
[1] Bera S, Rao K K V . Estimation of origin destination matrix from traffic counts: the state of the art[J]. European Transport, 2011, 49:3-23.
[2] Shen W, Wynter L. A new one-level convex optimization approach for estimating OD demand[J]. Transportation Research Part B, 2012, 46(10): 1535-1555.
[3] Zhou X S, Mahmassani H S. A structural state space model for real time traffic origin destination demand estimation and prediction in a day to day learning framework[J]. Transportation Research Part B, 2007, 41(8): 823 - 840.
[4] Zhou X S, Lu C C, Zhang K L. Dynamic origin-destination demand flow estimation under congested traffic conditions[J]. Transportation Research Part C, 2013, 34:16-37.
[5] Parry K H M. Estimation of origin-destination matrices from link counts and sporadic routing data[J]. Transportation Research Part B, 2012, 46(1): 75-88.
[6] David P W. Maximum likelihood estimation of an origin destination matrix from a partial registration plate survey[J]. Transportation Research Part B,1994, 28(4): 289-314.
[7] Hazelton M L. Statistical inference for time varying origin destination matrices[J]. Transportation Research Part B, 2008, 42(6): 542-552.
[8] Perrakis K, Karlis D, Cools M, et al. A Bayesian approach for modeling origin-destination matrices[J]. Transportation Research Part A, 2012, 46(1): 200-212.
[9] Toledo T, Kolechkina T. Estimation of dynamic origin-destination matrices using linear assignment matrix approximations[J]. IEEE Transactions on Intelligent Transportation Systems,2013,14(2): 618-626.
[10] 常云涛. 考虑交通流行驶时间的高速公路动态O-D矩阵估计模型[J].同济大学学报:自然科学版, 2009, 37(9): 1185-1190.
Chang Yun-tao. Dynamic O-D matrix estimation model of freeway with consideration of travel time[J]. Journal of Tongji University (Natural Science), 2009, 37(9):1185-1190.
[11] Lin P W, Chang G L. A generalized model and solution algorithm for estimation of the dynamic freeway origin destination matrix[J]. Transportation Research Part B,2007, 41(5):554-572.
[12] 林勇,蔡远利,黄永宣. 基于广义最小二乘模型的动态O-D矩阵估计[J]. 系统工程理论与实践,2004, 1(1): 136-144.
Lin Yong, Cai Yuan-li, Huang Yong-xuan. GLS model based dynamic origin-destination matrix estimation for traffic system[J]. Systems Engineering Theory and Practice, 2004, 1(1): 136-144.
[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 田彦涛, 张宇, 王晓玉, 陈华. 基于平方根无迹卡尔曼滤波算法的电动汽车质心侧偏角估计[J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[14] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[15] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!