吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 358-369.doi: 10.13229/j.cnki.jdxbgxb20190858

• 通信与控制工程 • 上一篇    

应用改进布谷鸟算法优化多阈值图像分割

吴禄慎(),程伟,胡赟   

  1. 南昌大学 机电工程学院,南昌 330031
  • 收稿日期:2019-09-03 出版日期:2021-01-01 发布日期:2021-01-20
  • 作者简介:吴禄慎(1953-),男,教授,博士生导师. 研究方向:图像处理,计算机视觉.E-mail:wulushen@163.com
  • 基金资助:
    国家自然科学基金项目(51065021)

Image segmentation of multilevel threshold based on improved cuckoo search algorithm

Lu-shen WU(),Wei CHENG,Yun HU   

  1. School of Mechanical and Electrical Engineering,Nanchang University,Nanchang 330031,China
  • Received:2019-09-03 Online:2021-01-01 Published:2021-01-20

摘要:

针对传统多阈值图像分割方法在寻找最优阈值过程中存在计算量大、计算时间长的问题,提出了一种基于改进布谷鸟算法的多阈值图像分割方法。首先,将教与学搜索策略引入布谷鸟算法,提高了算法的局部搜索能力;其次,选择当前种群中适应度值较优的精英解构建精英库并随机选择精英解指导搜索方向,强化优势经验的学习;最后,引入模拟退火机制选择鸟巢位置,有效避免了个体在寻优过程中陷入局部最优。选择了多幅不同类型的复杂多目标图像进行分割实验,并与布谷鸟算法、蛙跳算法、教与学优化算法及广义反向粒子群与引力搜索混合算法的分割结果进行对比分析。实验结果表明,该方法在分割准确性、计算时间和收敛性上均优于对比算法,能快速有效地解决复杂多目标图像的多阈值分割问题。

关键词: 图像分割, 多阈值分割, 布谷鸟算法, 教与学搜索策略, 精英解, 模拟退火机制

Abstract:

In order to overcome the issue of large amount of calculation and long computing time of the traditional multi-threshold image segmentation methods, a multi-threshold image segmentation method based on improved cuckoo search algorithm is proposed. Firstly, the teaching-learning search strategy is introduced into the cuckoo algorithm to improve local search ability of the algorithm. Secondly, the elite solution with better fitness value in the current population is selected to construct the elite database, and the elite solution is randomly selected to guide the search direction, so as to strengthen the advantage of experience learning. Finally, the simulated annealing mechanism is introduced to select the bird's nest location, which can effectively avoid the individuals falling into the local optimum in the process of optimization. Several different types of complex multi-target images are selected for segmentation experiments in comparison with those of cuckoo search algorithm (CS), shuffled frog leaping algorithm (SFL), teaching-learning-based optimization (TLBO) and hybrid PSOGSA with generalized oppositing-based learning (GOPSOGSA). Experimental results show that the proposed method is superior to the contrasted algorithms in segmentation accuracy, running time and convergence. It can quickly and effectively solve the multi-threshold segmentation problem of complex multi-target images.

Key words: image segmentation, multilevel threshold segmentation, cuckoo search algorithm(CS), teaching-learning search strategy, elite solution, simulated annealing mechanism

中图分类号: 

  • TP391.4

图1

基于改进布谷鸟算法的多阈值图像分割流程图"

图2

原始图像的灰度直方图"

表1

本文方法的控制参数"

参数名称数值
发现概率Pa0.25
精英库中精英解数量最大值nmax15
精英库中精英解数量最小值nmin2
降温衰减系数α0.8

图3

原始图像及其多阈值分割结果"

表2

5种方法得出的分割阈值对比"

图像m分割方法
CSSFLTLBOGOPSOGSA本文
Lena359,108,15961,110,15958,108,15859,108,15959,108,159
459,102,148,18550,87,122,16251,90,131,17053,98,143,18455,99,143,182
538,72,106,143,18154,90,105,143,17634,67,108,142,18146,83,118,152,18644,80,115,150,185
Goldhill377,130,17676,131,17777,130,17777,130,17677,130,176
458,97,142,18554,92,129,17354,95,140,18360,100,144,18864,104,146,188
566,98,137,172,20044,75,107,138,18453,83,116,148,18561,100,133,163,20258,94,130,164,198
Lake371,118,16873,118,16972,119,16871,118,16871,118,168
464,103,151,19561,99,132,17275,121,163,19871,116,158,19569,111,155,194
558,85,123,162,19536,72,112,156,19340,78,119,161,19763,100,133,166,20161,95,130,165,197
Bridge374,126,17771,122,17275,125,17674,126,17574,126,175
471,118,172,21767,115,163,21370,118,167,21872,120,172,21974,125,174,220
558,98,139,179,22187,124,157,192,22356,95,132,174,22166,110,147,187,22563,103,143,184,223
Foxes363,123,18364,122,18262,121,18163,123,18263,123,182
448,91,137,18945,82,136,18965,112,152,19858,101,146,19355,102,149,195
547,79,112,141,17836,69,111,149,19444,104,136,177,21147,90,134,171,20946,85,124,163,202
Boat379,142,19980,145,19778,142,20079,142,19979,142,199
448,101,146,19943,85,141,20050,96,143,19349,103,151,20048,98,148,201
542,76,115,154,20334,63,102,148,19643,71,113,157,20141,81,122,161,20545,84,124,161,205

表3

5种方法得出的目标函数值对比"

图像m分割方法
CSSFLTLBOGOPSOGSA

本文

方法

Lena315.764615.762015.764115.764615.7646
418.565318.508518.526418.583318.5885
521.206421.073521.156221.225821.2388
Goldhill315.607715.606215.607115.607715.6077
418.398118.353018.383718.405518.4142
521.041620,952020.988421.062821.0991
Lake315.565815.564315.565615.565815.5658
418.342318.293618.334118.362018.3693
520.972120.889520.910221.003621.0259
Bridge315.472815.470715.472415.473515.4735
418.430418.402618.421318.436618.4434
521.212221.049021.188521.243021.2555
Foxes315.968615,.967215.967815.968815.9688
418.896918.852318.881918.918618.9276
521.582021.465721.506921.644021.6757
Boat316.210916.207016.210116.210916.2109
419.338519.282919.305419.340119.3478
522.102721.916222.048522.128722.1352

图4

Lena图像的5阈值分割结果"

图5

Lake图像的5阈值分割结果"

图6

Bridge图像的5阈值分割结果"

图7

Foxes图像的5阈值分割结果"

表4

5种分割方法得出的PSNR值对比 (dB)"

图像m分割方法
CSSFLTLBOGOPSOGSA

本文

方法

Lena320.465420.314520.441220.465420.4654
422.162121.717822.038922.505622.8019
523.735522.564123.366223.927624.3137
Goldhill320.915420.762320.841920.915420.9154
423.067522.797122.913623.349923.7912
523.579322.183222.943523.842824.9052
Lake319.326219.243919.309519.326219.3262
421.468920.437621.278721.524821.7116
522.245021.056221.624322.631622.9765
Bridge320.404520.312420.376220.418020.4180
420.762119.917820.318921.185621.5558
522.783621.452622.120823.157723.6224
Foxes322.335722.290222.322522.337922.3379
423.761323.162423.591524.056324.2487
524.562723.542924.320624.963225.5493
Boat320.743420.655420.737920.743420.7434
424.681524.274024.419524.852125.1556
526.145925.339525.795826.350326.8693

表5

5种分割方法的计算时间对比 (s)"

图像m分割方法
CSSFLTLBOGOPSOGSA

本文

方法

Lena31.75921.86361.70341.78581.6592
41.90352.11851.82231.91841.7414
52.10282.49432.06492.17261.9873
Goldhill31.42341.58561.39331.43821.3525
41.54551.82411.50761.64051.4352
51.82842.09261.74681.87901.6429
Lake31.60641.72471.54291.66021.4938
41.74151.91201.69361.82371.6085
51.97422.22541.90822.02131.7839
Bridge31.63561.80231.64411.71491.5857
41.78291.97241.79371.86511.7102
52.01462.31691.94252.03751.8846
Foxes31.69181.85721.65801.73941.6013
41.83562.02971.77251.89281.7264
52.04952.36521.98212.06791.9027
Boat31.45461.67301.41231.48341.3782
41.59241.83471.54781.68461.4954
51.86312.16951.81741.89081.7260

图8

5种分割方法的收敛曲线对比"

1 Mala C, Sridevi M. Multilevel threshold selection for image segmentation using soft computing techniques[J]. Soft Computing,2016, 20(5): 1793-1810.
2 Sarkar S, Das S, Chaudhuri S S. Multi-level thresholding with a decomposition-based multi-objective evolutionary algorithm for segmenting natural and medical images[J]. Applied Soft Computing, 2017, 50: 142-157.
3 吕宗伟, 杨世琦, 高阳华, 等. Kapur多级分割的阈值相关性及其快速实现算法[J]. 计算机辅助设计与图形学学报, 2014, 26(11): 2056-2063.
Zhong-wei Lü, Yang Shi-qi, Gao Yang-hua, et al. Fast implementation of Kapur's method for multilevel thresholding based on dependence of thresholds[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(11): 2056-2063.
4 Agrawal S, Panda R, Bhuyan S, et al. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm[J]. Swarm and Evolutionary Computation, 2013, 11: 16-30.
5 Bhandari A K, Singh V K, Kumar A, et al. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy[J]. Expert Systems with Applicatiions, 2014, 41(7): 3538-3560.
6 Pare S, Kumar A. Bajaj V,et al. A multilevel color image segmentation technique based on cuckoo search algorithm and energy curve[J]. Applied Soft Computing, 2016, 47: 76-102.
7 Li Ling-guo, Sun Li-juan, Guo Jian, et al. Fuzzy multilevel image thresholding based on modified quick artificial bee colony algorithm and local information aggregation[J]. Mathematical Problems in Engineering, 2016, 2016: 1-18.
8 Suresh S, Lal S. Multilevel thresholding based on chaotic darwinian particle swarm optimization for segmentation of satellite images[J]. Applied Soft Computing, 2017, 55: 503-522.
9 Gill H S, Khehra B S, Singh A, et al. Teaching-learning-based optimization algorithm to minimize cross entropy for selecting multilevel threshold values[J]. Egyptian Informatics Journal, 2019, 20(1): 11-25.
10 汤可宗, 柳炳祥, 徐洪焱, 等. 一种基于遗传算法的最小交叉熵阈值选择方法[J]. 控制与决策, 2013, 28(12): 1805-1811.
Tang Ke-zong, Liu Bing-xiang, Xu Hong-yan, et al. A minimum cross entropy threshold selection method based on genetic algorithm[J]. Control and Decision, 2013, 28(12): 1805-1811.
11 康杰红, 马苗. 基于蛙跳算法与Otsu法的图像多阈值分割技术[J]. 云南大学学报:自然科学版, 2012, 34(6): 634-640.
Kang Jie-hong, Ma Miao. Multilevel thresholding segmentation based on shuffled frog leaping algorithm and Otsu method[J]. Journal of Yunnan University(Natural Science Edition), 2012, 34(6): 634-640.
12 巢渊, 戴敏, 陈恺, 等. 基于广义反向粒子群与引力搜索混合算法的多阈值图像分割[J]. 光学精密工程, 2015, 23(3): 879-886.
Chao Yuan, Dai Min, Chen Kai, et al. Image segmentation of multilevel threshold using hybrid PSOGSA with generalized opposition-based learning[J]. Optics and Precision Engineering, 2015,23(3): 879-886.
13 张新明, 尹欣欣, 涂强. 动态迁移和椒盐变异融合生物地理学优化算法的高维多阈值分割[J]. 光学精密工程, 2015, 23(10): 2943-2951.
Zhang Xin-ming, Yin Xin-xin, Tu Qiang. High-dimensional multilevel thresholding based on BBO with dynamic migration and salt & pepper mutation[J]. Optics and Precision Engineering, 2015, 23(10): 2943-2951.
14 刘丁, 张新雨, 陈亚军. 基于多目标人工鱼群算法的硅单晶直径检测图像阈值分割方法[J]. 自动化学报, 2016, 42(3): 431-442.
Liu Ding, Zhang Xin-Yu, Chen Ya-Jun. Monocrystalline silicon diameter detection image threshold segmentation method using multi-objective artificial fish swarm algorithm[J]. Acta Automatica Sinica, 2016, 42(3): 431-442.
15 罗钧, 杨永松, 侍宝玉. 基于改进的自适应差分演化算法的二维Otsu多阈值图像分割[J]. 电子与信息学报, 2019, 41(8): 2017-2024.
Luo Jun, Yang Yong-song, Shi Bao-yu. Multi-threshold image segmentation of 2D Otsu based on improved adaptive differential evolution algorithm[J]. Journal of Electronics and Information Technology, 2019, 41(8): 2017-2024.
16 Yang X S, Deb S. Engineering optimization by cuckoo search[J]. International Journal of Mathematical Modelling & Numerical Optimization, 2010, 1(4): 330-343.
17 Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems[J]. Computer Aided Design, 2011, 43(3): 303-315.
18 Zou F, Chen D B, Xu Q Z. A survey of teaching-learning-based optimization[J]. Neurocomputing, 2019, 335: 266-383.
19 Kaur K, Rattan M, Patterh M S. Optimization of cognitive radio system using simulated annealing[J]. Wireless Personal Communication, 2013, 71(2): 1283-1296.
20 Kotte S, Rajesh Kumar P, Injeti S K. An efficient approach for optimal multilevel thresholding selection for gray scale images based on improved differential search algorithm[J]. Ain Shams Engineering Journal, 2018, 9(4): 1043-1067.
21 董丽丽, 于苗, 徐淑琴. 模拟退火粒子群优化投影寻踪的渠道防渗模式评价[J]. 排灌机械工程学报, 2016,34(7): 639-644.
Dong Li-li, Yu Miao, Xu Shu-qin. Evaluation of canal seepage control plans by using simulated annealing particle swarm with projection pursuit[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(7): 639-644.
[1] 郜峰利,陶敏,李雪妍,何昕,杨帆,王卓,宋俊峰,佟丹. 基于深度学习的CT影像脑卒中精准分割[J]. 吉林大学学报(工学版), 2020, 50(2): 678-684.
[2] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[3] 肖明尧, 李雄飞, 张小利, 张刘. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[4] 刘仲民, 李战明, 李博皓, 胡文瑾. 基于稀疏矩阵的谱聚类图像分割算法[J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[5] 赵夫群, 周明全, 耿国华. 基于GA-Otsu法的图像阈值分割及定量识别[J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[6] 肖明尧, 李雄飞. 基于高斯分解的多尺度3D Otsu阈值分割算法[J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[7] 王培智, 田地, 龙涛, 李抵非, 邱春玲, 刘敦一. 用于TOF-SIMS的锆石样品图像自动聚焦算法[J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[8] 申铉京, 张赫, 陈海鹏, 王玉. 快速递归多阈值分割算法[J]. 吉林大学学报(工学版), 2016, 46(2): 528-534.
[9] 郑欣, 彭真明, 邢艳. 基于活跃度的图像分割算法性能评价新方法[J]. 吉林大学学报(工学版), 2016, 46(1): 311-317.
[10] 李一兵, 杨鹏, 叶方, 刘丹丹. 基于交互势函数和均场参数估计的分层MRF模型的纹理图像分割[J]. 吉林大学学报(工学版), 2015, 45(6): 2075-2079.
[11] 李雄飞1, 2, 赵浩宇1, 陈霄3, 赵宏伟1, 2. 基于视觉特征的不规则形状目标分割方法[J]. 吉林大学学报(工学版), 2014, 44(4): 1140-1144.
[12] 张金果,郭海涛,吴君鹏,李依桐. 改进的最小交叉Tsallis熵的小目标声呐图像分割[J]. 吉林大学学报(工学版), 2014, 44(3): 834-839.
[13] 何凯, 穆星, 邹刚. 基于图像分割的三维立体匹配改进算法[J]. 吉林大学学报(工学版), 2014, 44(01): 219-224.
[14] 康文炜, 康文颖, 康晓涛. 基于信息测度的图像过渡区提取与分割[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 414-418.
[15] 胡汉平, 朱明, 吉淑娇, 郭滨. 基于图像分割和可变窗的联合立体匹配[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 317-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!