吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 39-48.doi: 10.13229/j.cnki.jdxbgxb20190938

• 车辆工程·机械工程 • 上一篇    下一篇

柴油机排气阶段颗粒碰撞过程动力学特征分析

王忠1(),李游1,张美娟1,2,刘帅1,李瑞娜1,赵怀北1   

  1. 1.江苏大学 汽车与交通工程学院,江苏 镇江 212013
    2.无锡职业技术学院 汽车与交通学院,江苏 无锡 214121
  • 收稿日期:2019-10-10 出版日期:2021-01-01 发布日期:2021-01-20
  • 作者简介:王忠(1961-),男,教授,博士生导师.研究方向:内燃机排放控制和替代燃料.E-mail:wangzhong@ujs.edu.cn
  • 基金资助:
    国家自然科学基金项目(51776089);江苏高等学校自然科学基金项目(18KJB470006);汽车测控与安全四川省重点实验室开放课题项目(QCCK2019-004);中国博士后科学基金项目(2019M651732);江苏省高等职业院校专业带头人高端研修项目(2019GRFX111)

Analysis on particle collision dynamics parameters in diesel exhaust stage

Zhong WANG1(),You LI1,Mei-juan ZHANG1,2,Shuai LIU1,Rui-na LI1,Huai-bei ZHAO1   

  1. 1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
    2.School of Automotive and Traffic,Wuxi Institute of Technology,Wuxi 214121,China
  • Received:2019-10-10 Online:2021-01-01 Published:2021-01-20

摘要:

为探究柴油机排气阶段颗粒碰撞过程的动力学特征,采用离散单元动力学软件EDEM和Fluent耦合,基于相似理论,建立了柴油机排气阶段颗粒碰撞仿真模型。针对柴油机不同排气压差、气体流速的碰撞过程进行仿真,分析了碰撞过程中颗粒的角速度、湍动能、转矩、碰撞刮擦力等碰撞动力学参数的变化规律。结果表明:当流速一定、粒径相同、排气压差由0.188 MPa增大到0.268 MPa时,碰撞刮擦力中的法向作用力与切向作用力分别增加了1.5倍和1.7倍,平均旋转湍动能由2.26×10-9 J增加到3.52×10-9 J。当压差一定、粒径相同、气体流速由5.65 m/s增大到6.78 m/s时,碰撞刮擦力中的法向作用力与切向作用力分别增加50.5%和45.5%,颗粒的平均角速度由7.87×105 rad/s增大到10.85×105 rad/s。本文研究结果可为降低柴油机颗粒排放和提高柴油机捕集器(DPF)的捕集效率提供依据。

关键词: 动力机械工程, 柴油机, 排气阶段, 颗粒, 碰撞, 动力学

Abstract:

In order to explore the dynamic characteristics of particle collision in diesel engine exhaust phase, a simulation model of particle collision was established by coupling discrete element dynamics software EDEM with Fluent based on similarity theory. The collision process of diesel engine with different exhaust pressure difference and flow velocity were simulated. The effects of collision dynamics parameters such as angular velocity, rotational turbulent kinetic energy, torque and collision scraping force on the diesel engine during collision were analyzed. The results show that the normal force and tangential force increase by 1.5 and 1.7 times respectively when the velocity of flow is constant, the particle size is the same and the exhaust pressure difference increases from 0.188 MPa to 0.268 MPa, and the average rotational turbulent kinetic energy increases from 2.26×10-9 J to 3.52×10-9 J. When the pressure difference is constant, the particle size is the same and the gas flow rate increases from 5.65 m/s to 6.78 m/s, the normal force and tangential force increase by 50.5% and 45.5% respectively, and the average angular velocity of particles increases from 7.87×105 rad/s to 10.85×105 rad/s. The research results can provide a basis for improving diesel particulate filter (DPF) capture efficiency.

Key words: power machinery engineering, diesel engine, exhaust stage, particle, collision, dynamics

中图分类号: 

  • TK421

图1

186FA柴油机气道简化图"

表1

原型颗粒与模型颗粒物性参数表"

颗粒粒径/nm质量密度/(kg·m-3)温度/K相似指标/R
原型100120010000.83~0.90
模型1.0×105310683
1.5×105232625
2.0×105165565
2.5×105101503

图2

186FA柴油机试验台架"

图3

扫描电镜和颗粒SEM图"

图4

不同负荷工况186FA柴油机气缸压力曲线"

表2

排气阶段各特征转角活塞上行速度"

转速/

(r?min-1)

各特征转角活塞上行速度/(m?s-1)
180 °CA270 °CA360 °CA
3000011.300
3300012.440
3600013.560

图5

迭代曲线"

图6

颗粒角速度、旋转湍动能和转矩随压差的变化"

图7

颗粒刮擦力随压差的变化曲线"

图8

颗粒角速度、旋转湍动能和转矩随流速的变化"

图9

颗粒刮擦力随流速的变化曲线"

图10

颗粒角速度、旋转湍动能和转矩随粒径的变化"

图11

颗粒刮擦力随粒经的变化曲线"

1 宁智, 资新运, 王宪成. 脉动排气对柴油机微粒凝并作用的研究[J]. 燃烧科学与技术, 2002, 8(6): 503-506.
Ning Zhi, Zi Xin-yun, Wang Xian-cheng. Study on the effect of fluctuant exhaust on the aggregation of diesel exhaust particulate[J]. Journal of Combustion Science and Technology, 2002, 8(6): 503-506.
2 王玉明, 林建忠. Brown 凝并中两个不同直径纳米颗粒的碰撞系数[J]. 应用数学和力学, 2011, 32(8): 956-963.
Wang Yu-ming, Lin Jian-zhong. Collision efficiency of two nanoparticles with different diameters in the brownian coagulation[J]. Applied Mathematics and Mechanics, 2011, 32(8): 956-963.
3 杨芳玲, 王忠, 赵洋, 等. 柴油机等径颗粒平面碰撞过程凝并特征[J]. 科学通报, 2016, 61(12): 1379-1385.
Yang Fang-ling, Wang Zhong, Zhao Yang, et al. Coalescence features of planar collision between particulate matters of same diameter from diesel engine[J]. Chinese Science Bulletin, 2016, 61(12): 1379-1385.
4 Lennart F, Sergiy A, Stefan H, et al. Collision dynamics in fluidized bed granulators: a DEM-CFD study[J]. Chemical Engineering Science, 2013, 86: 108-123.
5 Liu W M, Xu J, Liu X D. Numerical study on collision characteristics for non-spherical particles in venturi powder ejector[J]. Vacuum, 2016, 131: 285-292.
6 杨芳玲. 柴油机缸内颗粒碰撞与凝并过程研究[D]. 镇江:江苏大学汽车与交通工程学院, 2017.
Yang Fang-ling. Study on the collision and coagulation process of particles in diesel engine[D]. Zhenjiang: School of Automotive and Traffic Engineering, Jiangsu University, 2017.
7 赵怀北. 柴油机排气颗粒碰撞过程与团聚特征研究[D]. 镇江:江苏大学能源与动力工程学院,2018.
Zhao Huai-bei. Study on the collision process and agglomeration characteristics of particles in diesel engine[D]. Zhenjiang: School of Energy and Power Engineering, Jiangsu University, 2018.
8 Matsusaka S, Theerachaisupakij W, Yoshida H, et al. Deposition layers formed by a turbulent aerosol flow of micron and sub-micron particles[J]. Powder Technology, 2001, 118(1/2): 130-135.
9 周美立. 汽车系统单元化集成设计中相似性与复杂性[J]. 汽车工程, 2004, 26(6): 735-738.
Zhou Mei-li. Similarity and complexity in unitization integrated design for vehicle system[J]. Automotive Engineering, 2004, 26(6): 735-738.
10 刘宏新, 孟永超, 李彦龙, 等. 沼肥采运车储罐动力学数值模拟与相似模型试验[J]. 农业工程学报, 2015, 31(17): 42-49.
Liu Hong-xin, Meng Yong-chao, Li Yan-long, et al. Numerical simulation of dynamic and similarity model test of tank in biogas fertilizer transport truck[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(17): 42-49.
11 Batchelor G K. The application of the similarity theory of turbulence to atmospheric diffusion[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 76(328): 133-146.
12 李瑞霞,柳朝晖,贺铸,等. 各向同性湍流内颗粒碰撞率的直接模拟研究[J]. 力学学报,2006,38(1):25-32.
Li Rui-xia,Liu Zhao-hui,He Zhu,et al. Direct numerical simulation of inertial particle collisions in isotropic turbulence[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(1): 25-32.
13 Wang L, Chen S, Xie H. Numerical simulation of the growth of nanoparticles in a flame CVD process[J]. Chinese Particuology, 2004, 2(5): 215-221.
14 Seinfeld J H, Pandis S N, Noone K. Atmospheric chemistry and physics: from air pollution to climate change[J]. Environment Science and Policy for Sustainable Development, 1998, 40(7): 26-29.
15 韩健, 东明, 李素芬, 等. 飞灰颗粒与平板表面撞击过程的实验研究[J]. 化工学报, 2013, 64(9): 3161-3167.
Han Jian, Dong Ming, Li Su-fen, et al. Experimental research on fly ash particles impacting planar surface[J]. CIESC Journal, 2013, 64(9): 3161-3167.
16 周美立. 相似性科学[M]. 北京: 科学出版社, 2004.
17 王忠, 孙波, 赵洋, 等. 小型非道路柴油机排气管内颗粒的粒径分布与氧化特性[J]. 农业工程学报, 2016, 32(10): 41-46.
Wang Zhong, Sun Bo, Zhao Yang, et al. Characteristics of particle coagulation and oxidation in exhaust pipe of diesel engine[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 41-46.
18 Streets D G, Gupta S, Waldhoff S T, et al. Black carbon emissions in China: Asia[J]. Atmospheric Environment, 2001, 35(25): 4281-4296.
19 Huang Y, Lee C, Choi Y, et al. Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs[J]. Journal of Mechanical Science & Technology, 2011, 25(11): 2853-2857.
20 Marshall J S. Viscous damping force during head-on collision of two spherical particles[J]. Physics of Fluids, 2011, 23(1): 5382-5393.
21 黄立沛. 基于离散元素法的动态配料模型预测控制算法研究[D]. 重庆:重庆大学自动化学院, 2017.
Huang Li-pei. Research on model predictive control algorithm of dynamic batching process based on discrete element method[D]. Chongqing:School of Automation, Chongqing University, 2017.
22 Kittelson D B. Engines and nanoparticles: a review[J]. Journal of Aerosol Science, 1998, 29(5/6): 575-588.
23 Park D, Choi N K, Lee S G, et al. Real-time measurement of the size distribution of diesel exhaust particles using a portable 4-stage electrical low pressure impactor[J]. Particle & Particle Systems Characterization, 2010, 26(4): 179-186.
24 Cashdollar K L, Zlochower I A. Explosion temperatures and pressures of metals and other elemental dust clouds[J]. Journal of Loss Prevention in the Process Industries, 2006, 20(4-6): 337-348.
25 Hauert F, Vogl A, Radandt S. Dust cloud characterization and its influence on the pressure-time-history in silos[J]. Process Safety Progress, 1996, 15(3): 178-184.
26 Stessel R I, Peirce J J. Pulsed-flow air classification for waste-to-energy[J]. Journal of Energy Engineering, 1983, 109(2): 60-73.
27 Tukmakov A L. Numerical model of the electro-gas-dynamics of a gas-particle system based on the equations of motion of a two-velocity two-temperature gas-particle mixture[J]. Journal of Applied Mechanics & Technical Physics, 2015, 56(4): 636-643.
28 Tong Z, Zhong W, Yu A, et al. CFD-DEM investigation of the effect of agglomerate-agglomerate collision on dry powder aerosolisation[J]. Journal of Aerosol Science, 2016, 92(10): 109-121.
29 李新令, 黄震, 王嘉松, 等. 柴油机排气颗粒浓度和粒径分布特征试验研究[J]. 内燃机学报, 2007, 25(2): 113-117.
Li Xin-ling, Huang Zhen, Wang Jia-song, et al. Investigation on concentrations and size distribution characteristic of particles from diesel engine[J]. Transactions of CSICE, 2007, 25(2): 113-117.
30 朴香兰, 王国强, 张占强, 等. 水平转弯颗粒流的离散元模拟[J]. 吉林大学学报:工学版, 2010, 40(1): 98-102.
Xiang-lan Piao, Wang Guo-qiang, Zhang Zhan-qiang, et al. Discrete element method simulation of granular flow on horizontalturn[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(1): 98-102.
31 王晓燕, 李芳, 葛蕴珊, 等. 甲醇柴油与生物柴油微粒排放粒径分布特[J]. 农业机械学报, 2009, 40(8): 7-12.
Wang Xiao-yan, Li Fang, Ge Yun-shan, et al. Particle size distribution of particulate matter emission from the diesel engine burning methanol-diesel fuel and biodiesel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 7-12.
32 黄军. 扭曲管内流态化粒子对壁面的磨蚀及碰撞动力学研究[D]. 湖南:湘潭大学机械工程学院, 2015.
Huang Jun. Study on the wall erosion and collision dynamics of fluidized particles in twisted tube[D]. Hunan:School of Mechanical Engineering, Xiangtan University, 2015.
33 赵怀北, 王忠, 刘帅, 等. 柴油机排气颗粒的力学特征与形貌分析[J]. 科学通报, 2017, 62(30): 3498-3505.
Zhao Huai-bei, Wang Zhong, Liu Shuai, et al. Analysis on the morphology and mechanical characteristics of agglomerated particles emitted from the diesel exhaust process[J]. China Science Bulletin, 2017, 62(30): 3498-3505.
[1] 马芳武,梁鸿宇,王强,蒲永锋. 双材料负泊松比结构的面内冲击动力学性能[J]. 吉林大学学报(工学版), 2021, 51(1): 114-121.
[2] 苏畅,韩颖,张英朝,苗振华. 轮辐设计特征参数对整车气动特性的影响[J]. 吉林大学学报(工学版), 2021, 51(1): 107-113.
[3] 兰巍,刘江,辛俐,李婧锡,胡兴军,王靖宇,桑涛. 后视镜造型对侧窗水相分布的影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1590-1599.
[4] 王建,许鑫,顾晗,张多军,刘胜吉. 基于排气热管理的柴油机氧化催化器升温特性[J]. 吉林大学学报(工学版), 2020, 50(2): 408-416.
[5] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 29-35.
[6] 佟鑫,张乐乐,刘文,康洪军. 新型纵向卧铺结构被动安全性仿真分析与评估[J]. 吉林大学学报(工学版), 2020, 50(1): 147-155.
[7] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[8] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
[9] 辛俐,兰巍,刘江,万沁林,郭鹏,胡兴军,肖阳. 汽车涉水车身表面污染仿真及控制[J]. 吉林大学学报(工学版), 2019, 49(6): 1786-1794.
[10] 王金国,任帅,闫瑞芳,黄恺,王志强. TiC颗粒对铸态球墨铸铁组织和力学性能的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 2010-2018.
[11] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[12] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[13] 管欣,金号,段春光,卢萍萍. 汽车行驶道路侧向坡度估计[J]. 吉林大学学报(工学版), 2019, 49(6): 1802-1809.
[14] 狄胜同,贾超,乔卫国,李康,童凯. 橡胶集料混凝土细观损伤特性的加载速率效应[J]. 吉林大学学报(工学版), 2019, 49(6): 1900-1910.
[15] 韩小健,赵伟强,陈立军,郑宏宇,刘阳,宗长富. 基于区域采样随机树的客车局部路径规划算法[J]. 吉林大学学报(工学版), 2019, 49(5): 1428-1440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!