吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (6): 1911-1919.doi: 10.13229/j.cnki.jdxbgxb20180922

• • 上一篇    下一篇

重型增压柴油机燃烧过程中的缸内㶲损失

刘长铖(),刘忠长,田径(),许允,杨泽宇   

  1. 吉林大学 汽车仿真与控制国家重点实验室,长春 130022
  • 收稿日期:2018-09-10 出版日期:2019-11-01 发布日期:2019-11-08
  • 通讯作者: 田径 E-mail:liuchangcheng1@163.com;jingtian@jlu.edu.cn
  • 作者简介:刘长铖(1990-),男,博士研究生. 研究方向:内燃机公害与控制. E-mail:liuchangcheng1@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFB0103503);吉林省教育厅“十三五”科学技术项目(JJKH20180142KJ);吉林省自然科学基金项目(20190201101JC)

In⁃cylinder exergy destruction during combustion process ofheavy⁃duty turbocharged diesel engine

Chang-cheng LIU(),Zhong-chang LIU,Jing TIAN(),Yun XU,Ze-yu YANG   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2018-09-10 Online:2019-11-01 Published:2019-11-08
  • Contact: Jing TIAN E-mail:liuchangcheng1@163.com;jingtian@jlu.edu.cn

摘要:

为了探索增压柴油机燃烧过程中缸内?损失分布特征及其影响因素,以某车用重型增压柴油机为研究对象,基于试验平台、STAR-CD计算流体力学软件及其理论,计算分析了特定工况下燃烧过程中的缸内?损失变化规律、分布特征、影响因素及其相关性。结果表明:缸内?损失主要发生在燃烧过程,且化学反应?损失及其所占缸内总?损失的比例正相关于柴油机负荷;柴油机缸内?损失主要由化学反应的不可逆性引起,化学反应引起的?损失多发生在油束边缘附近;最大的化学反应?损失率发生在当量比为1~1.5的区域,而在当量比为0~1的稀混合区及大于1.5的过浓混合区相对偏低;在一定温度范围内化学反应?损失率与燃油放热率基本呈正比关系,在特定放热率区域内,随缸内局部温度的升高,化学反应?损失及化学反应?损度逐渐减少;随燃烧过程的进行,当量比、温度与化学反应?损失的相关强度均逐渐减小。

关键词: 动力机械工程, 增压柴油机, 燃烧过程, 缸内?损失, 温度, 当量比

Abstract:

The purpose of this paper is to explore the distribution of in-cylinder exergy destruction and its influence factors in combustion process. A heavy-duty turbocharged diesel engine is taken as the research object to study exergy change rule, exergy destruction distribution in cylinder and its influence factors based on test platform, STAR-CD computational fluid dynamics software and subsequent theoretical calculation. The results show that first, exergy destruction in cylinder mainly happens in combustion process, the exergy destruction caused by chemical reaction and its proportion to in-cylinder exergy destruction are positively related with engine load at the same speed, the proportion is up to 94.5% at B75 working condition. Secondly, exergy destruction in cylinder of diesel engine is mainly caused by chemical reaction irreversibility and it mostly occurs at the edge of oil beam. Third, the largest chemical reaction exergy destruction rate happens in dense mixing zone whose equivalence ratio range is 1~1.5; however, the value is relatively low in dilute mixing region or denser mixing zone whose equivalence ratio is lower than 1 or greater than 1.5. With the development of combustion process, the reaction exergy destruction rate decreases gradually in different equivalence ratios zone. Fourth, in a certain temperature range, the chemical reaction exergy destruction rate is almost proportional to the heat release rate of fuel, and in a certain heat release rate region, the chemical reaction exergy destruction and its proportion of the fuel exergy gradually reduces with the temperature increase. Finally, as the combustion process proceeding, the relative intensity of equivalence ratio, temperature and chemical reaction exergy destruction decrease gradually.

Key words: power machinery and engineering, turbo-charged diesel engine, combustion process, in-cylinder exergy destruction, temperature, equivalent ratio

中图分类号: 

  • TK421

表1

试验用增压柴油机基本参数"

参 数数值
缸径/mm112
行程/mm145
压缩比17
总排量/L8.6
标定功率/kW257
标定转速/(r·min-1)2 100
单缸气门数/个4
气缸数/个6
进气方式增压-中冷
供油系统Bosch共轨控制系统

表2

计算模型的选取"

模型名称模型类型
湍流模型k-ε/RNG
着火模型Shell
雾化模型Huh
喷嘴模型MPI-2
液滴破碎模型Reitz/Diwakar
撞壁模型Bai
燃烧模型EBU LATCT
NOx排放预测模型Zeldovich
Soot排放预测模型Mauss

图1

不同工况下仿真模型的验证"

图2

不同工况下燃烧过程中累积缸内?损失"

图3

各部分?流占燃料?的比例"

图4

化学反应?损失及其占缸内总?损失的比例"

图5

柴油机热效率与比油耗"

图6

B50工况下缸内化学反应?损失率的分布"

图7

化学反应?损失率-放热率-温度的散点图"

图8

上止点后5 °CA化学反应?损度-温度散点图"

图9

化学反应?损失率-当量比散点图"

图10

不同当量比范围下的化学反应?损失率变化"

图11

温度与化学反应?损失的相关系数"

图12

当量比与化学反应?损失的相关系数"

1 田径, 刘忠长, 刘金山, 等. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报:工学版, 2018, 48(1): 159-165.
1 TianJing, LiuZhong-chang, LiuJin-shan, et al. Performance optimization of diesel engine based on response surface methodology of multi-boundary combustion conditions[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(1): 159-165.
2 LiT T, CatonJ A, JacobsT J. Energy distribution in a diesel engine using low heat rejection (LHR) concepts[J]. Energy Conversion and Management, 2016, 130: 14-24.
3 YanF, SuW H. A promising high efficiency RM-HCCI combustion proposed by detail kinetics analysis of exergy losses[C]∥SAE Paper, 2015-01-1751.
4 KhoobbakhtG, AkramA, KarimiM, et al. Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a DI diesel engine[J]. Applied Thermal Engineering, 2016, 99: 720-729.
5 MahabadipourH, SrinivasanK K, KrishnanS R. A second law-based framework to identify high efficiency pathways in dual fuel low temperature combustion[J]. Applied Energy, 2017, 202: 199-212.
6 周松, 王银. 内燃机工作过程仿真技术[M]. 北京: 北京航空航天大学出版社, 2012.
7 蒋德明. 内燃机燃烧与排放学[M]. 西安: 西安交通大学出版社, 2001.
8 JafarmadarS, TasoujiazarR, JalipourB. Exergy analysis in a low heat rejection IDI diesel engine by three dimensional modeling[J]. International Journal of Energy Research, 2014, 38(6): 791-803.
9 解茂昭. 内燃机计算燃烧学[M]. 大连: 大连理工大学出版社, 2005.
10 JafarmadarS, MansouryM. Exergy analysis of air injection at various loads in a natural aspirated direct injection diesel engine using multi-dimensional[J]. Fuel, 2015, 154: 123-131.
11 JafarmadarS, NematiP. Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model[J]. Renewable Energy, 2016, 99: 514-523.
12 PennyM A. Efficiency improvements with low heat rejection concepts applied to low temperature combustion [D]. Texas:Texas A&M University, 2014.
13 RakopoulosC D, KyritsisD C. Comparative second-law analysis of internal combustion engine operation for methane, methanol, and dodecane fuels[J]. Energy, 2001, 26(7): 705-722.
14 FuJ Q, LiuJ P, FengR H, et al. Energy and exergy analysis on gasoline engine based on mapping characteristics experiment[J]. Applied Energy, 2013, 102: 622-630.
15 LiY P, JiaM, KokjohnS L, et al. Comprehensive analysis of exergy destruction sources in different engine combustion regimes[J]. Energy, 2018, 149: 697-708.
16 范立云, 许德, 费红姿, 等. 高速电磁阀电磁力全工况关键参数相关性分析[J]. 农业工程学报, 2015, 31(6): 89-96.
16 FanLi-yun, XuDe, FeiHong-zi, et al. Key parameters’ correlation analysis on high-speed solenoid valve electromagnetic force under overall operating conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6): 89-96.
17 李文辉, 袁志国, 刘长铖. 离合器滑摩过程中负载特性对动力传动系统转速的影响[J]. 哈尔滨工程大学学报, 2018, 39(8): 1296-1301.
17 LiWen-hui, YuanZhi-guo, LiuChang-cheng. Effects of load characteristics on powertrain system speed in frictional sliding process of clutch[J]. Journal of Harbin Engineering University, 2018, 39(8): 1296-1301.
[1] 何仁,涂琨. 基于温度补偿气隙宽度的电磁制动器[J]. 吉林大学学报(工学版), 2019, 49(6): 1777-1785.
[2] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[3] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[4] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
[5] 段春争,张方圆,寇文能,魏斌. 高速硬切削表面白层马氏体相变[J]. 吉林大学学报(工学版), 2019, 49(5): 1575-1583.
[6] 闫光,卢建中,张开宇,孟凡勇,祝连庆. 温度解耦大量程光纤光栅应变传感器[J]. 吉林大学学报(工学版), 2019, 49(5): 1682-1688.
[7] 王德军,吕志超,王启明,张建瑞,丁建楠. 基于EKF及调制傅式级数的缸压辨识[J]. 吉林大学学报(工学版), 2019, 49(4): 1174-1185.
[8] 张艳芹,冯雅楠,孔鹏睿,于晓东,孔祥滨. 基于热油携带的静压支承油膜温度场及试验[J]. 吉林大学学报(工学版), 2019, 49(4): 1203-1211.
[9] 臧鹏飞,王哲,高洋,孙晨乐. 直线电机/发动机系统稳态运行综合控制策略[J]. 吉林大学学报(工学版), 2019, 49(3): 798-804.
[10] 李于朋,孙大千,宫文彪. 6082⁃T6铝合金薄板双轴肩搅拌摩擦焊温度场[J]. 吉林大学学报(工学版), 2019, 49(3): 836-841.
[11] 李伊,刘黎萍,孙立军. 沥青面层不同深度车辙等效温度预估模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1703-1711.
[12] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[13] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[14] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[15] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王小兵,陈建军,高伟,赵俊,李金平. 层叠板结构瞬态温度场的灵敏度分析[J]. 吉林大学学报(工学版), 2006, 36(04): 456 -461 .
[2] 刘序宗,刘树彬,郑伟,安琪 . BESⅢ TOF子触发系统击中信息
多通道串行同步传输方法
[J]. 吉林大学学报(工学版), 2008, 38(02): 483 -0488 .
[3] 那景新,崔岸,甘维银,胡平. 局部减缩积分曲面展开单元在某汽车翼子板一步成形模拟中的应用[J]. 吉林大学学报(工学版), 2006, 36(01): 57 -0061 .
[4] 郑海红,曾平,王义峰 . 基于极性调制的鲁棒水印算法[J]. 吉林大学学报(工学版), 2007, 37(03): 681 -0685 .
[5] 戴文亭,魏海斌,刘寒冰,高一平. 冻融循环下粉质黏土的动力损失模型[J]. 吉林大学学报(工学版), 2007, 37(04): 790 -793 .
[6] 彭勇,孙立军,石永久,黄志义 . 沥青混合料劈裂强度的影响因素[J]. 吉林大学学报(工学版), 2007, 37(06): 1304 -1307 .
[7] 施刚,石永久,王元清. 钢框架半刚性端板连接弯矩-转角滞回模型[J]. 吉林大学学报(工学版), 2005, 35(06): 654 -0660 .
[8] 王占山 , , 张化光. 多时变时滞神经网络的全局指数稳定[J]. 吉林大学学报(工学版), 2005, 35(06): 621 -0625 .
[9] 何丽桥,王国光,王丹 . 提取混沌中微弱信号的正交局部投影方法[J]. 吉林大学学报(工学版), 2008, 38(04): 950 -954 .
[10] 彭保,顾学迈 . 无线传感器网络中基于验证点的安全定位协议[J]. 吉林大学学报(工学版), 2008, 38(05): 1186 -1190 .