吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (6): 1945-1950.doi: 10.13229/j.cnki.jdxbgxb20180567

• • 上一篇    下一篇

考虑加热面粗糙度和材料的沸腾换热修正模型

胡潇宇(),李国祥(),白书战,孙柯,李思远   

  1. 山东大学 能源与动力工程学院, 济南 250061
  • 收稿日期:2018-06-05 出版日期:2019-11-01 发布日期:2019-11-08
  • 通讯作者: 李国祥 E-mail:huxiaoyu@mail.sdu.edu.cn;liguox@sdu.edu.cn
  • 作者简介:胡潇宇(1988-),男,博士研究生. 研究方向:内燃机热负荷.E-mail:huxiaoyu@mail.sdu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51576116)

Modified boiling heat transfer model considering roughness and material of heating surface

Xiao-yu HU(),Guo-xiang LI(),Shu-zhan BAI,Ke SUN,Si-yuan LI   

  1. School of Energy and Power Engineering, Shandong University, Jinan 250061, China
  • Received:2018-06-05 Online:2019-11-01 Published:2019-11-08
  • Contact: Guo-xiang LI E-mail:huxiaoyu@mail.sdu.edu.cn;liguox@sdu.edu.cn

摘要:

在Chen模型基础上,综合考虑加热面粗糙度和材料对沸腾换热的影响,对Chen模型的核态沸腾换热项进行修正。所得修正后模型能有效预测粗糙度R a≤4.62 μm的铜加热面和R a≤8.12 μm的铝加热面的沸腾换热结果,与试验数据相比,总体误差在30%以内。

关键词: 动力机械工程, 过冷流动沸腾换热, 粗糙度, Chen模型

Abstract:

Nucleation boiling term of Chen model was modified by considering the influence of roughness and material of the heating surface. The modified model can effectively fit the experiment data of copper heating surface with roughness less than or equal to 4.62 μm and aluminum heating surface with roughness less than or equal to 8.12 μm, and the overall prediction error is within 30%.

Key words: power machinery and engineering, subcooled boiling heat transfer, surface roughness, Chen model

中图分类号: 

  • TK402

图1

Chen模型预测值与试验值的对比"

图2

粗糙度与热流密度的关系"

图3

核态沸腾换热项系数关系图"

图4

铝加热面修正模型预测值与试验值对比"

图5

铜加热面修正模型预测值与试验值对比"

图6

预测热流密度与试验热流密度对比"

1 林学东, 李德刚, 田维 . 高压喷射的高速直喷柴油机混合气形成及燃烧过程[J]. 吉林大学学报:工学版, 2009, 39(6): 1446-1451.
1 Lin Xue-dong , Li De-gang , Tian Wei . Air-fuel mixture formation and combustion process of a high-speed direct-injection diesel engine with high pressure injection[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(6): 1446-1451.
2 林学东, 顾静静, 李德刚, 等 . 柴油机燃烧室结构对混合气形成及燃烧特性的影响[J]. 吉林大学学报:工学版, 2014, 44(6): 1647-1654.
2 Lin Xue-dong , Gu Jing-jing , Li De-gang , et al . Effects of combustion chamber on the mixture formation and combustion characteristics of diesel engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1647-1654.
3 Guo B , Zhang W , Wang X . Failure analysis of a modern high performance diesel engine cylinder head[J]. Advances in Mechanical Engineering, 2014, 2014(8): 1-7.
4 Steiner H , Brenn G , Ramstorfer F , et al . Increased cooling power with nucleate boiling flow in automotive engine applications[C]∥New Trends and Developments in Automotive System Engineering,Italy,2011: 249-272.
5 Hosny Z , Abou Z . Forced convection and sub-cooled flow boiling heat transfer in asymmetrically heated ducts of T-section[J]. Energy Conversion and Management, 2004, 45(7/8): 1043-1065.
6 Robinson K , Campbell N A F , Hawley J G , et al . A review of precision engine cooling[C]∥SAE Paper, 1999-01-0578.
7 Finlay I C , Boyle R J , Pirault J P , et al . Nucleate and film boiling of engine coolants flowing in an uniformly heated duct of small cross section[C]∥SAE Paper, 870032.
8 Yu W , France D W , Singh D , et al . Subcooled flow boiling of ethylene glycol/water mixtures in a bottom-heated tube[J]. International Journal of Heat and Mass Transfer, 2014, 72(5): 637-645.
9 Robinson K , Hawley J G , Campell N A F . Experimental and modeling aspects of flow boiling heat transfer for application to internal combustion engines[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2003, 217(10): 877-889.
10 Steiner H , Breitsch?del B , Brenn G , et al . Nucleate boiling flow—Experimental investigations and wall heat transfer modeling for automotive engine applications[J/OL].[2018-05-28].https:∥.
11 Chen W , Fang X . A note on the Chen correlation of saturated flow boiling heat transfer[J]. International Journal of Refrigeration, 2014, 48: 100-104.
12 Setoodeh H , Keshavarz A , Ghasemian A , et al . Subcooled flow boiling of ethylene–glycol/water mixture in an inclined channel with a hot spot: an experimental study[J]. International Communications in Heat & Mass Transfer, 2016, 78: 285-294.
13 Chen J C . Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329.
14 Dittus F W , Boelter L M K . Heat transfer in automobile radiator of the tubular type[J]. International Communications in Heat & Mass Transfer, 1985, 12(1): 3-22.
15 Forster H K , Zuber N . Dynamics of vapor bubbles and boiling heat transfer[J]. Aiche Journal, 1955, 1(4): 531-535.
16 Steiner H , Kobor A , Gebhard L . A wall heat transfer model for subcooled boiling flow[J]. International Journal of Heat & Mass Transfer, 2005, 48(19): 4161-4173.
17 Paz M C , Conde M , Suárez E , et al . On the effect of surface roughness and material on the subcooled flow boiling of water: experimental study and global correlation[J]. Experimental Thermal & Fluid Science, 2015, 64: 114-124.
18 Hua S , Huang R , Li Z , et al . Experimental study on the heat transfer characteristics of subcooled flow boiling with cast iron heating surface[J]. Applied Thermal Engineering, 2015, 77: 180-191.
19 Li Y Y , Chen Y J , Liu Z H . A uniform correlation for predicting pool boiling heat transfer on plane surface with surface characteristics effect[J]. International Journal of Heat & Mass Transfer, 2014, 77: 809-817.
20 Soleimani B , Keshavarz A . Heat transfer enhancement of an internal subcooled flow boiling over a hot spot[J]. Applied Thermal Engineering, 2016, 99: 206-213.
[1] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[2] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[3] 朱一骁,何小民,金义. 联焰板宽度对单凹腔驻涡燃烧室流线形态的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1936-1944.
[4] 王德军,吕志超,王启明,张建瑞,丁建楠. 基于EKF及调制傅式级数的缸压辨识[J]. 吉林大学学报(工学版), 2019, 49(4): 1174-1185.
[5] 徐戊矫,刘承尚,鲁鑫垚. 喷丸处理后6061铝合金工件表面粗糙度的模拟计算及预测[J]. 吉林大学学报(工学版), 2019, 49(4): 1280-1287.
[6] 臧鹏飞,王哲,高洋,孙晨乐. 直线电机/发动机系统稳态运行综合控制策略[J]. 吉林大学学报(工学版), 2019, 49(3): 798-804.
[7] 鲁金忠,周婉婷,张圣洋,邵亦锴,王长雨,罗开玉. 激光冲击强化层数对6061⁃T6铝合金抗腐蚀性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 842-849.
[8] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[9] 赵爽,沈继红,张刘,赵晗,陈柯帆. 微细电火花加工表面粗糙度快速高斯评定[J]. 吉林大学学报(工学版), 2018, 48(6): 1838-1843.
[10] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[11] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[12] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[13] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[14] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[15] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 戴文亭,魏海斌,刘寒冰,高一平. 冻融循环下粉质黏土的动力损失模型[J]. 吉林大学学报(工学版), 2007, 37(04): 790 -793 .
[2] 王荣本;李琳辉;郭烈;金立生;张明恒 . 基于立体视觉的越野环境感知技术[J]. 吉林大学学报(工学版), 2008, 38(03): 520 -0524 .
[3] 张文彬, 张中兆, 王孝 . 提高ad hoc网络中TCP吞吐量的新定时方案[J]. 吉林大学学报(工学版), 2008, 38(01): 233 -238 .
[4] 郭孔辉;王爽;丁海涛;张建伟 . 后悬架非对称式橡胶衬套弹性耦合特性[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[5] 杨公平,曾广周 . 基于导航的迁移工作流组织与执行[J]. 吉林大学学报(工学版), 2006, 36(05): 819 -0823 .
[6] 李少华,黄慧,郭婷婷,蒲建业 . 颗粒在横向紊动射流中运动轨迹的数值模拟[J]. 吉林大学学报(工学版), 2006, 36(06): 1029 -1033 .
[7] 陈永恒,葛兴,王殿海. 城市干线典型路段速度-流量特性分析[J]. 吉林大学学报(工学版), 2006, 36(04): 613 -617 .
[8] 曹小涛,李元春 . 基于分布参数模型的柔性臂变结构控制[J]. 吉林大学学报(工学版), 2008, 38(04): 924 -929 .
[9] 赵继,陈德祥,张富,詹建明,张恩忠. SiC悬浊液超光滑表面加工技术[J]. 吉林大学学报(工学版), 2006, 36(04): 518 -522 .
[10] 田丽梅;任露泉;刘庆平;赵国如 . 仿生非光滑旋成体表面减阻特性数值模拟[J]. 吉林大学学报(工学版), 2006, 36(06): 908 -0913 .