吉林大学学报(工学版) ›› 2021, Vol. 51 ›› Issue (1): 114-121.doi: 10.13229/j.cnki.jdxbgxb20190851

• 车辆工程·机械工程 • 上一篇    

双材料负泊松比结构的面内冲击动力学性能

马芳武1,2(),梁鸿宇1,2,王强1,蒲永锋1()   

  1. 1.吉林大学 汽车仿真与控制国家重点实验室,长春 130022
    2.吉林大学 青岛汽车研究院,山东 青岛 266000
  • 收稿日期:2019-07-12 出版日期:2021-01-01 发布日期:2021-01-20
  • 通讯作者: 蒲永锋 E-mail:mikema@jlu.edu.cn;puyongfeng@jlu.edu.cn
  • 作者简介:马芳武(1960-),男,教授,博士生导师. 研究方向:汽车轻量化.E-mail: mikema@jlu.edu.cn
  • 基金资助:
    吉林省产业技术研究与开发专项项目(2019C041-2);吉林大学研究生创新基金项目(101832020CX132);吉林省省校共建计划专项项目(SXGJQY2017-7);国家重点研发计划项目(2016YFB0101601)

In-plane dynamic crushing of dual-material structure with negative Poisson′s ratio

Fang-wu MA1,2(),Hong-yu LIANG1,2,Qiang WANG1,Yong-feng PU1()   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
    2.Qingdao Automobile Research Institute,Jilin University,Qingdao 266000,China
  • Received:2019-07-12 Online:2021-01-01 Published:2021-01-20
  • Contact: Yong-feng PU E-mail:mikema@jlu.edu.cn;puyongfeng@jlu.edu.cn

摘要:

提出了一种双材料双箭头负泊松比结构,在保证元胞几何参数不变的前提下,引入了刚性材料分数ψ。采用显式动力有限元软件LS-DYNA对不同冲击速度和不同刚性材料分数下的动力学响应进行数值模拟研究,并详细讨论了其对面内抗冲击能力和能量吸收能力的影响。同时,为了获得较好的综合性能,进一步建立了分层递变梯度模型,探究了梯度形式对峰值冲击力、比吸能、平台应力的影响关系。研究结果表明:刚性材料分数的引入使得平台应力得到了显著提升,并随着刚性材料分数的增加而增加,其对峰值冲击力与比吸能的影响机制有着明显的不同;通过合理地设计梯度分布形式,可以在保持峰值冲击力较低的前提下,进一步提高能量吸收能力,实现对材料吸能过程的控制。

关键词: 车辆工程, 碰撞吸能, 双材料, 梯度分布, 负泊松比, 轴向冲击

Abstract:

Dual-material auxetic double arrowhead structure with negative Poisson’s ratio was proposed. Under the assumption that all geometric dimensions were the same, the stiff material fraction ψ was introduced. Based on explicit dynamic finite element simulation by LS-DYNA, the in-plane dynamic responses of dual-material auxetic double arrowhead structure with negative Poisson’s ratio were numerically studied. The effects of the stiff material fraction and the impact velocity on the in-plane impact resistance and energy absorption capacities were discussed in detail. In order to obtain better comprehensive performance, a functionally layered honeycomb model was established and the effects of the gradient forms on the peak crush force, specific energy absorption and plat-form stress were investigated. The results show that the platform stress has a great improvement and increases with the fraction of the stiff material, and the influence mechanism on the peak impact force and the specific energy absorption are significantly different from the others. Under the presupposition that the peak impact force was lower, the energy absorption capacity can be improved by reasonable designing gradient forms to realize the control of the energy absorption process.

Key words: vehicle engineering, collision energy absorption, dual-material, gradient distribution, negative Poisson′s ratio, axial impact

中图分类号: 

  • U465.9

图1

双材料双箭头负泊松比单胞结构"

图2

模型示意图和冲击加载示意图"

图3

有效应力应变曲线"

图4

双材料双箭头负泊松比结构在面内冲击下能量曲线"

图5

多胞材料典型的名义应力应变曲线"

图6

不同冲击速度下的应力应变曲线"

图 7

不同工况下的平台应力变化曲线"

图8

不同工况下的峰值冲击力变化曲线"

图9

不同冲击速度下的能量吸收曲线"

图10

不同工况下的总比吸能变化曲线"

图11

四种梯度分布形式"

图12

梯度分布下不同冲击速度下的应力应变曲线"

表1

梯度分布下的主要性能指标"

指标v/(m·s–1刚性材料分数分布形式
0%25%50%75%100%“1”“2”“3”“4”
PCF/kN307.188.517.538.9914.157.3514.127.3314.11
7018.9118.9919.5819.4248.5918.9148.7118.9145.57
12023.1023.1023.3823.0963.8723.1060.7023.1064.76
σp/MPa306.406.7710.2811.8715.7410.089.929.669.83
708.6910.2512.8716.1817.9613.3612.8811.5113.13
12013.5016.0619.7824.0526.8321.3918.8019.3920.45
SEA/(J·kg-1306 7225 1396 8826 1618 1137 3426 8056 9416 878
709 4778 6728 6759 3479 2679 5839 1838 1799 227
12013 15611 15510 44911 77611 43313 04610 06510 91612 554

图13

接触瞬间的变形模式图"

图 14

正梯度分布下材料的变形过程"

图15

梯度分布下不同冲击速度下的能量吸收曲线"

1 Zhao Y, Ma F, Yang L, et al. Study on engine hood with negative poisson's ratio architected composites based on pedestrian protection[J]. SAE International Journal of Engines, 2017, 10(2): 391-404.
2 卢子兴, 王欢, 杨振宇, 等. 星型-箭头蜂窝结构的面内动态压溃行为[J]. 复合材料学报, 2019, 36(8): 1893-1900.
Lu Zi-xing, Wang Huan,Yang Zhen-yu. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893-1900.
3 Liu W, Wang N, Luo T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100:84-91.
4 张伟, 侯文彬, 胡平. 新型负泊松比多孔吸能盒平台区力学性能[J]. 复合材料学报, 2015, 32(2): 534-541.
Zhang Wei, Hou Wen-bin, Hu Ping. Mechanical properties of new negative Poisson's ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 534-541.
5 Zhang D, Fei Q, Zhang P. In–plane dynamic crushing be havior and energy absorption of honeycombs with a novel type of multi-cells[J]. Thin-Walled Structures, 2017, 117:199-210.
6 邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析[J]. 振动与冲击, 2017, 36(13):103-109.
Deng Xiao-lin,Liu Wang-yu. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson's ratio[J]. Journal of Vibration and Shock, 2017, 36(13): 103-109.
7 马芳武, 梁鸿宇. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报:工学版, 2020, 50(1): 29-35.
Ma Fang-wu, Liang Hong-yu. Multi-objective crashwor thiness optimization design of concave triangles cell structure with negative Poisson's ratio[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 29-35.
8 韩会龙, 张新春. 星形节点周期性蜂窝结构的面内动力学响应特性研究[J]. 振动与冲击, 2017, 36(23): 223-231.
Han Hui-long, Zhang Xin-chun. In-plane dynamic impact response characteristics of periodic 4-point star-shaped honeycomb structures[J]. Journal of Vibration and Shock, 2017, 36(23): 223-231.
9 Li D, Yin J, Dong L, et al. Strong re-entrant cellular struc tures with negative Poisson's ratio[J]. Journal of Materials Science, 2018, 53(5):3493-3499.
10 Liu W, Wang N, Luo T, et al. In-plane dynamic crush-ing of re-entrant auxetic cellular structure[J]. Materials & Design, 2016, 100: 84-91.
11 Zhang X C, An L Q, Ding H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient[J]. Journal of Sandwich Structures & Materials, 2014, 16(2) 125-147.
12 李振, 丁洋, 王陶. 新型并联梯度蜂窝结构(HPD)的面内力学性能[J/OL]. 复合材料学报, 2020, 37(1): 155-163.
Li Zhen, Ding Yang, Wang Tao. In-plane crushing be-have iors of honeycombs with a novel parallel graded design[J]. Acta Materiae Compositae Sinica, 2020, 37(1): 155-163.
13 Li D, Ma J, Dong L, et al. A bi-material structure with Poisson's ratio tunable from positive to negative via temperature control[J]. Materials Letters, 2016, 181:285-288.
14 Wang K, Chang Y H, Chen Y W, et al. Designable dual-material auxetic metamaterials using three-dimensional printing[J]. Materials & Design, 2015, 67: 159-164.
15 Wang Y, Wang L, Ma Z D, et al. A negative Poisson's ratio suspension jounce bumper[J]. Materials & Design, 2016, 103: 90-99.
16 文桂林, 孔祥正, 尹汉锋. 泡沫填充夹芯墙多胞结构的耐撞性多目标优化设计[J]. 振动与冲击, 2015, 34(5): 115-121.
Wen Gui-lin, Kong Xiang-zheng, Yin Han-feng. Multi-objective crashworthiness optimization design of foam-filled sandwich wall multi-cell structures[J]. Journal of Vibration and Shock, 2015, 34(5): 115-121.
17 Liu Z, Hao W, Xie J. Axial-impact buckling modes and ener gy absorption properties of thin-walled corrugated tubes with sinusoidal patterns[J]. Thin-Walled Structures, 2015, 94: 410-423.
18 Zhang P, Wang Z, Zhao L. Dynamic crushing behavior of open-cell aluminum foam with negative Poisson's ratio[J]. Applied Physics A, 2017, 123(5): 321.
19 Zhang D, Fei Q, Zhang P. In–plane dynamic crushing behavior and energy absorption of honeycombs with a novel type of multi-cells[J]. Thin-Walled Structures, 2017, 117: 199-210.
[1] 杜常清,曹锡良,何彪,任卫群. 基于混合粒子群算法的双离合变速器参数优化设计[J]. 吉林大学学报(工学版), 2020, 50(5): 1556-1564.
[2] 李静,石求军,洪良,刘鹏. 基于车辆状态估计的商用车ESC神经网络滑模控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1545-1555.
[3] 高菲,肖阳,张文华,祁锦轩,李子樵,马骁远. 高温和荷电状态对锂离子电池单体力学响应的耦合影响[J]. 吉林大学学报(工学版), 2020, 50(5): 1574-1583.
[4] 陈吉清,蓝庆生,兰凤崇,刘照麟. 基于轮胎力预判与拟合的轨迹跟踪控制[J]. 吉林大学学报(工学版), 2020, 50(5): 1565-1573.
[5] 杨志刚,范亚军,夏超,储世俊,单希壮. 基于双稳态尾迹的方背Ahmed模型减阻[J]. 吉林大学学报(工学版), 2020, 50(5): 1635-1644.
[6] 沈哲,王毅刚,杨志刚,贺银芝. 风洞中未知声源漂移误差的逼近修正[J]. 吉林大学学报(工学版), 2020, 50(5): 1584-1589.
[7] 刘钊,程江琳,朱玉田,郑立辉. 轨道车辆垂向振动建模及运动关联分析[J]. 吉林大学学报(工学版), 2020, 50(5): 1600-1607.
[8] 李小雨,许男,仇韬,郭孔辉. 各向异性刚度对轮胎力学特性及车辆操纵性的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 389-398.
[9] 陈鑫,王宁,沈传亮,冯晓,杨昌海. 后视镜造型对前侧窗气动噪声的影响[J]. 吉林大学学报(工学版), 2020, 50(2): 426-436.
[10] 李银平,靳添絮,刘立. 纯电动铲运机弓网续能系统设计与动态特性仿真[J]. 吉林大学学报(工学版), 2020, 50(2): 454-463.
[11] 赖晨光,王擎宇,胡博,文凯平,陈彦宇. 静气动弹性影响下带小翼汽车尾翼的设计与优化[J]. 吉林大学学报(工学版), 2020, 50(2): 399-407.
[12] 叶辉,刘畅,闫康康. 纤维增强复合材料在汽车覆盖件中的应用[J]. 吉林大学学报(工学版), 2020, 50(2): 417-425.
[13] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋. 内凹三角形负泊松比结构耐撞性多目标优化设计[J]. 吉林大学学报(工学版), 2020, 50(1): 29-35.
[14] 郭孔辉,黄世庆,吴海东. 适用于高频激励的面内轮胎动态模型[J]. 吉林大学学报(工学版), 2020, 50(1): 19-28.
[15] 王哲,谢怡,臧鹏飞,王耀. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020, 50(1): 36-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!