吉林大学学报(工学版) ›› 2019, Vol. 49 ›› Issue (6): 1936-1944.doi: 10.13229/j.cnki.jdxbgxb20181279

• • 上一篇    下一篇

联焰板宽度对单凹腔驻涡燃烧室流线形态的影响

朱一骁1(),何小民1,2(),金义1,2   

  1. 1. 南京航空航天大学 能源与动力学院,南京 210016
    2. 南京航空航天大学 江苏省航空动力系统重点实验室,南京 210016
  • 收稿日期:2018-12-27 出版日期:2019-11-01 发布日期:2019-11-08
  • 通讯作者: 何小民 E-mail:zyx_tvc@nuaa.edu.cn;hxmnuaa@outlook.com
  • 作者简介:朱一骁(1990-),男,博士研究生.研究方向:推进系统燃烧技术.E-mail:zyx_tvc@nuaa.edu.cn
  • 基金资助:
    江苏省普通高校研究生科研创新计划项目(KYLX15_0252);国家自然科学基金项目(51506086)

Effects of radial strut width on flow structure ofsingle⁃cavity trapped vortex combustor

Yi-xiao ZHU1(),Xiao-min HE1,2(),Yi JIN1,2   

  1. 1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
    2. Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,China
  • Received:2018-12-27 Online:2019-11-01 Published:2019-11-08
  • Contact: Xiao-min HE E-mail:zyx_tvc@nuaa.edu.cn;hxmnuaa@outlook.com

摘要:

为了研究联焰板宽度对单凹腔驻涡燃烧室流线形态的影响,设计了一个带扩压器和内外机匣的单凹腔驻涡燃烧室,并在此基础上进行了常温、常压状态下的冷态流场试验,试验中设置联焰板宽度分别为40、30、20 mm。研究结果表明:在主流中心截面(PM)上,凹腔内存在双涡流动结构,主涡位于凹腔的中间位置,副涡位于主涡与主流之间;在联焰板中心截面(PA)上,不同的联焰板宽度会形成两种不同的流线形态,当联焰板宽度较宽时,凹腔内为单涡流动结构,仅存在主涡结构,主涡回流气流沿联焰板向火焰筒下壁面流动;当联焰板宽度较窄时,凹腔内为双涡流动结构,主流气流卷入联焰板后方。

关键词: 动力机械工程, 单凹腔驻涡燃烧室, 联焰板宽度, 流线形态

Abstract:

In order to study the flow structure of different width of radial strut, a single-cavity trapped vortex combustor with diffuser and casings was designed. Unburnt flow field experiments were carried out by changing the width of radial strut on the combustor. Experiments were accomplished at atmospheric pressure and temperature. The main parameters of the experiments were shown as follows: the width of radial strut was 40,30,20 mm while the number of radial strut was constant. The results showed that on the central section of mainstream (PM), there were two vortices in the cavity. The main vortex was located in the middle of cavity, and the secondary vortex was located between the main vortex and mainstream. On the central section of radial strut (PA), different width of radial strut would form two different flow structures. When the width of radial strut was wider, the cavity had a single-vortex flow structure, which meant that only the main vortex existed in cavity. The reflux airflow from main vortex flowed along the radial strut to the lower wall of the liner. When the width of radial strut was narrower, the cavity had a double-vortex flow structure, which meant that the meanstream flowed to the behind of radial strut.

Key words: power machinery and engineering, single-cavity trapped vortex combustor, width of radial strut, flow structure

中图分类号: 

  • TK411.12

图1

单凹腔驻涡燃烧室二维示意图"

图2

联焰板结构示意图"

图3

冷态流场试验系统图"

表1

不同联焰板宽度的流量分配 %"

进气位置 联焰板宽度/mm
40 30 20
凹腔前 22.59 19.80 18.15
凹腔后 10.92 8.61 6.82
凹腔主流 37.08 47.94 55.09

图4

试验测量截面示意图"

图5

不同联焰板宽度下的XY截面流线图"

图6

不同联焰板宽度下的XZ截面流线图"

1 Roquemore W M , Shouse D , Burrus D , et al . Trapped vortex combustor concept for gas turbine engines[C]∥39th Aerospace Sciences Meeting and Exhibit, Reno, United States, 2001: 102856.
2 Zhao D , Gutmark E , Goey P . A review of cavity-based trapped vortex, ultra-compact, high-g, inter turbine combustors[J]. Progress in Energy and Combustion Science, 2018, 66(1): 42-82.
3 吴泽俊, 何小民, 洪亮, 等 . 采用离心喷嘴的单凹腔驻涡燃烧室点火与贫熄特性[J]. 推进技术, 2015, 36(4): 601-607.
3 Wu Ze-jun , He Xiao-min , Hong Liang , et al . Ignition and lean blowout characteristics of a single-cavity[J]. Journal of Propulsion Technology, 2015, 36(4): 601-607.
4 Ezhil K P K , Mishra D P . Numerical simulation of cavity flow structure in an axisymmetric trapped vortex combustor[J]. Aerospace Science and Technology, 2012, 21(1): 16-23.
5 Ezhil K P K , Mishra D P . Combustion noise characteristics of an experimental 2D trapped vortex combustor[J]. Aerospace Science and Technology, 2015, 43: 388-394.
6 Ezhil K P K , Kumar P , Mishra D P . Experimental investigation on the performance characteristics of a 2D trapped vortex combustor[J]. Journal of Aerospace Engineering, 2016, 230(10): 1840-1847.
7 Ezhil K P K , Mishra D P . Flame stability characteristics of two-dimensional trapped vortex combustor[J]. Combustion Science and Technology, 2016, 188(8): 1283-1302.
8 Ezhil K P K , Mishra D P . Combustion characteristics of a two-dimensional twin cavity trapped vortex combustor[J]. Journal of Engineering for Gas Turbines and Power—Transactions of the ASME, 2017, 139(7): 071504.
9 Ezhil K P K , Mishra D P . Numerical study of reacting flow characteristics of a 2D twin cavity trapped vortex combustor[J]. Combustion Theory and Modelling, 2017, 21(4): 1-19.
10 金义 . 高油气比驻涡燃烧室流动与燃烧性能研究[D]. 南京: 南京航空航天大学能源与动力学院, 2013.
10 Jin Yi .An investigation on flow and combustion characteristics of a high fuel air ratio trapped-vortex combustor[D]. Nanjing: College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, 2013.
11 Jin Y , He X M , Jiang B , et al . Effect of cavity-injector/radial-strut relative position on performance of a trapped vortex combustor[J]. Aerospace Science and Technology, 2014, 32(1): 10-18.
12 Jin Y , He X M , Zhang J Y , et al . Numerical investigation on flow structures of a laboratory-scale trapped vortex combustor[J]. Applied Thermal Engineering, 2014, 66(1/2): 318-327.
13 Jin Y , Li Y F , He X M , et al . Experimental investigations on flow field and combustion characteristics of a model trapped vortex combustor[J]. Applied Energy, 2014, 134: 257-269.
14 Zhu Yi-xiao , Jin Yi , He Xiao-min . Effects of location and angle of primary injection on the cavity flow structure of a trapped vortex combustor model[J]. Optik, 2019, 180: 699-712.
15 Li M Y , He X M , Zhao Y L , et al . Effect of strut length on combustion performance of a trapped vortex combustor[J]. Aerospace Science and Technology, 2018, 76: 204-216.
16 Wu Z J , Jin Y , He X M , et al . Experimental and numerical studies on a trapped vortex combustor with different struts width[J]. Applied Thermal Engineering, 2015, 91: 91-104.
17 何小民, 许金生, 苏俊卿 . 驻涡区进口结构参数影响TVC燃烧性能的试验[J]. 航空动力学报, 2007, 22(11): 1798-1802.
17 He Xiao-min , Xu Jin-sheng , Su Jun-qing . Effect of air and fuel injection patterns in pilot zone on trapped-vortex combustor performance[J]. Journal of Aerospace Power, 2007, 22(11): 1798-1802.
18 何小民, 张净玉 . 驻涡燃烧室燃烧组织方式和设计思路分析[J]. 航空科学技术, 2008(2): 26-29.
18 He Xiao-min , Zhang Jing-yu . Combustion buildup and design routine of trapped vortex combustor[J]. Aeronautical Science and Technology,2008(2): 26-29.
19 何小民, 许金生, 苏俊卿 . 驻涡燃烧室燃烧性能试验[J]. 航空动力学报, 2009, 24(2): 318-323.
19 He Xiao-min , Xu Jin-sheng , Su Jun-qing . Experimental research of the performance of the trapped vortex combustor[J]. Journal of Aerospace Power, 2009, 24(2): 318-323.
20 金义, 何小民, 蒋波 . 富油燃烧/快速淬熄/贫油燃烧(RQL)工作模式下驻涡燃烧室排放性能试验[J]. 航空动力学报, 2011, 26(5): 1031-1036.
20 Jin Yi , He Xiao-min , Jiang Bo . Experimental study on emission performance of rich-burn quick-quench lean-burn (RQL) trapped vortex combustor[J]. Journal of Aerospace Power, 2011, 26(5):1031-1036.
21 Jin Y , He X M , Zhang J Y , et al . Experimental study on emission performance of an LPP/TVC[J]. Chinese Journal of Aeronautics, 2012, 25(3): 335-341.
22 Jin Y , He X M , Jiang B , et al . Design and performance of an improved trapped vortex combustor[J]. Chinese Journal of Aeronautics, 2012, 25(6): 864-870.
[1] 宋昌庆,陈文淼,李君,曲大为,崔昊. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报(工学版), 2019, 49(6): 1929-1935.
[2] 刘长铖,刘忠长,田径,许允,杨泽宇. 重型增压柴油机燃烧过程中的缸内㶲损失[J]. 吉林大学学报(工学版), 2019, 49(6): 1911-1919.
[3] 胡潇宇,李国祥,白书战,孙柯,李思远. 考虑加热面粗糙度和材料的沸腾换热修正模型[J]. 吉林大学学报(工学版), 2019, 49(6): 1945-1950.
[4] 王德军,吕志超,王启明,张建瑞,丁建楠. 基于EKF及调制傅式级数的缸压辨识[J]. 吉林大学学报(工学版), 2019, 49(4): 1174-1185.
[5] 臧鹏飞,王哲,高洋,孙晨乐. 直线电机/发动机系统稳态运行综合控制策略[J]. 吉林大学学报(工学版), 2019, 49(3): 798-804.
[6] 董伟,宋佰达,邱立涛,孙昊天,孙平,蒲超杰. 直喷汽油机暖机过程中两次喷射比例对燃烧和排放的影响[J]. 吉林大学学报(工学版), 2018, 48(6): 1755-1761.
[7] 李志军, 汪昊, 何丽, 曹丽娟, 张玉池, 赵新顺. 催化型微粒捕集器碳烟分布及其影响因素[J]. 吉林大学学报(工学版), 2018, 48(5): 1466-1474.
[8] 秦静, 徐鹤, 裴毅强, 左子农, 卢莉莉. 初始温度和初始压力对甲烷-甲醇裂解气预混层流燃烧特性的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1475-1482.
[9] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[10] 宫洵, 蒋冰晶, 胡云峰, 曲婷, 陈虹. 柴油机主-从双微元Urea-SCR系统非线性状态观测器设计与分析[J]. 吉林大学学报(工学版), 2018, 48(4): 1055-1062.
[11] 钟兵, 洪伟, 金兆辉, 苏岩, 解方喜, 张富伟. 进气门早关液压可变气门机构运动特性[J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[12] 席雷, 徐亮, 高建民, 赵振, 王明森. 厚壁矩形带肋通道内蒸汽流动及传热特性[J]. 吉林大学学报(工学版), 2018, 48(3): 752-759.
[13] 李龙, 张幽彤, 左正兴. 变负载控制在自由活塞内燃发电机的缸压控制中的应用[J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[14] 卫海桥, 裴自刚, 冯登全, 潘家营, 潘明章. 压电喷油器多次喷射对GDI汽油机颗粒物排放的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[15] 田径, 刘忠长, 刘金山, 董春晓, 钟铭, 杜文畅. 基于燃烧边界参数响应曲面设计的柴油机性能优化[J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 裴士辉,赵宏伟 . 基于RSA的三次传递不可否认签名方案[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 134 -138 .
[2] 姚智胜,邵春福,熊志华,岳昊 . 基于主成分分析和支持向量机的道路网短时交通流量预测 [J]. 吉林大学学报(工学版), 2008, 38(01): 48 -52 .
[3] 孙志军, 李志军, 洪伟, 刘书亮. 稀、浓燃状态运行时间对装有吸附还原催化转化器的稀燃汽油机NOx排放的影响[J]. 吉林大学学报(工学版), 2005, 35(04): 373 -376 .
[4] 王家忠 ,,王龙山,李国发,周桂红,丁宁. 轴类零件外圆纵向磨削尺寸智能预测和控制系统[J]. 吉林大学学报(工学版), 2006, 36(02): 204 -0208 .
[5] 吕建婷,马广富,李传江. 卫星姿态跟踪的模糊滑模控制器设计[J]. 吉林大学学报(工学版), 2007, 37(04): 955 -958 .
[6] 王伟,杨兆升,李贻武,刘新杰,陈昕 . 基于信息协同的子区交通状态加权计算与判别方法[J]. 吉林大学学报(工学版), 2007, 37(03): 524 -0527 .
[7] 卢少微;陈辉;谢怀勤 . CFRP加固RC梁优化设计与试验[J]. 吉林大学学报(工学版), 2008, 38(03): 642 -0646 .
[8] 于生宝,张贤涛,陈天琦,王兆明 . 基于不接触电极的电阻率探测方法[J]. 吉林大学学报(工学版), 2008, 38(02): 370 -0373 .
[9] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[10] 张颖,段广仁,贺亮 . 一类含有时滞的离散切换系统鲁棒稳定性分析[J]. 吉林大学学报(工学版), 2006, 36(05): 740 -0744 .