吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (7): 1598-1606.doi: 10.13229/j.cnki.jdxbgxb20210129

• 交通运输工程·土木工程 • 上一篇    

基于能量法的超高韧性纤维混凝土疲劳损伤特性

顾章义(),张治成(),李辉   

  1. 浙江大学 建筑工程学院,杭州 310012
  • 收稿日期:2021-02-18 出版日期:2022-07-01 发布日期:2022-08-08
  • 通讯作者: 张治成 E-mail:zhangyigu@zju.edu.cn;jszzc@zju.edu.cn
  • 作者简介:顾章义(1991-),男,博士研究生. 研究方向:半刚性基层增韧抗裂.E-mail: zhangyigu@zju.edu.cn
  • 基金资助:
    浙江省自然科学基金项目(LZ21E080002)

Fatigue damage characteristics of ultra high toughness cementitious composite based on energy method

Zhang-yi GU(),Zhi-cheng ZHANG(),Hui LI   

  1. College of Civil Engineering and Architecture,Zhejiang University,Hangzhou 310012,China
  • Received:2021-02-18 Online:2022-07-01 Published:2022-08-08
  • Contact: Zhi-cheng ZHANG E-mail:zhangyigu@zju.edu.cn;jszzc@zju.edu.cn

摘要:

为探究超高韧性纤维混凝土材料(UHTCC)在交通荷载下的疲劳损伤性能,通过不同应力水平、频率下的单轴压缩试验得到了应力-应变曲线,结果表明:随着循环次数的增加,疲劳曲线呈疏-密-疏的3阶段规律,同时应变增长非线性程度逐渐增大。加载频率和应力水平的增加均会降低试件的疲劳寿命。在单轴压缩循环试验基础上建立本构模型,模型预测应力路径与试验结果吻合良好,验证了模型的正确性和适用性。以能量法为基础,采用耗散能指标评价UHTCC疲劳损伤程度,得到了初始损伤(2%左右)和疲劳损伤因子发展规律。此外,研究还发现在高应力比条件下疲劳开裂具有突然性。

关键词: 超高韧性纤维混凝土材料, 能量法, 本构模型, 疲劳, 耗散能

Abstract:

Experimental study of cylindrical samples under uniaxial cyclic compression was conducted to explore the effect of loading frequency and stress level on fatigue performance of ultra high toughness cementitious composite (UHTCC) under traffic loading. The results show that accumulation rate of stress-cycle curves could be disassembled into three stage with increase in number of cycles. Meanwhile, nonlinearity of strain increases gradually. The increase of loading frequency and stress level would reduce the fatigue life of specimens. The constitutive model for UHTCC was proposed based on the basis of uniaxial compression cyclic tests. Moreover, the stress path predicted by the model is in good agreement with the experimental results, which verifies the correctness and applicability of this model. Fatigue damage propagation is characterized by dissipated strain energy (DSE) based on energy-based mechanistic approach (EBM). The initial damage (about 2%) is obtained and the development law of fatigue damage factor is revealed. Additionly, the fatigue cracking is fast at high stress ratio.

Key words: ultra high toughness cementitious composite, energy-based mechanistic approach, constitutive model, fatigue, dissipated strain energy

中图分类号: 

  • U414

表1

单轴压缩疲劳试验方案"

试件编组频率/Hz幅值/kN
1130
240
360
4430
540
660
7830
840
950

图1

试件破坏"

图2

循环荷载作用下应力-应变曲线(60 kN)"

图3

循环荷载作用下应变曲线(60 kN)"

图4

疲劳与单轴压缩对比"

图5

加载和卸载路径图"

图6

应力路径试验与计算结果对比"

图7

各循环加载阶段的能量比较(1 Hz)"

图8

各循环加载阶段的能量比较(4 Hz)"

图9

各循环加载阶段的能量比较(8 Hz)"

图10

基于能量的初始损伤表示"

图11

疲劳损伤发展"

1 Wang L, Zhou S H, Shi Y, et al. Effect of silica fume and PVA fiber on the abrasion resistance and volume stability of concrete[J]. Composites Part B: Engineering, 2017, 130: 28-37.
2 Yao L, Sun Y, Guo L. Fibre bridging effect on the Paris relation of mode I fatigue delamination in composite laminates with different thicknesses[J]. International Journal of Fatigue, 2017, 103: 196-206.
3 Dieng L, Marchand P, Gomes F, et al. Use of UHPFRC overlay to reduce stresses in orthotropic steel decks [J]. Journal of Constructional Steel Research, 2013, 89(10): 30-41.
4 Liu G J, Bai E L, Xu J Y, et al. Mechanical properties of carbon fiber-reinforced polymer concrete with different polymer-cement ratios[J]. Materials, 2019, 12(21): No.3530.
5 López Deulofeu A. Study of UHPC reinforced by graphene oxide & carbon nanotubes composites and steel fibers[D]. Barcelona: Universitat Politècnica de Catalunya, 2019.
6 Li V C, Wang S, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal-American Concrete Institute, 2001, 98(6): 483-492.
7 Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, ASCE, 1992, 188(11): 2246-2264.
8 Xu S, Reinhardt H W. Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: analytical evaluating and practical measuring methods for three-point bending notched beams[J]. International Journal of Fracture, 1999, 98(2): 151-177.
9 张清华,卜一之,李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30.
Zhang Qing-hua, Bu Yi-zhi, Li Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30.
10 Huang B T, Li Q H, Xu S L, et al. Tensile fatigue behavior of fiber-reinforced cementitious material with high ductility: experimental study and novel P-S-N model[J]. Construction and Building Materials, 2018, 178(7): 349-359.
11 Fardis M N, Khalili H H. FRP-encased concrete as a structural material[J]. Magazine of Concrete Research, 1982, 34(121): 191-202.
12 Lam L, Teng J G. Stress-strain model for FRP-confined concrete under cyclic axial compression[J]. Engineering Structures, 2009, 31(2): 308-321.
13 Hany N F, Hantouche E G, Harajli M H. Axial stress-strain model of CFRP-confined concrete under monotonic and cyclic loading[J]. Journal of Composites for Construction, 2015, 19(6): 1-16.
14 王震宇,李洪鹏. 重复荷载作用下碳纤维约束混凝土加卸载准则[J]. 建筑结构, 2009, 39(7): 100-103, 70.
Wang Zhen-yu, Li Hong-peng. Loading and unloading criteria of FRP-confined concrete under cyclic compression[J]. Building Structure, 2009, 39(7): 100-103, 70.
15 李辉,罗雪,张裕卿. 基于耗散伪应变能的沥青疲劳动力学表征[J]. 中国公路学报, 2020, 33(10): 115-124.
Li Hui, Luo Xue, Zhang Yu-qing. Pseudo energy-based kinetic characterization of fatigue in asphalt binders[J]. China Journal of Highway and Transport, 2020, 33(10): 115-124.
16 Li Q, Huang B, Xu S, et al. Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility[J]. Cement and Concrete Research, 2016, 90: 174-183.
17 黄博滔. 超高韧性纤维混凝土材料及其功能梯度结构疲劳性能研究[D]. 杭州: 浙江大学建筑工程学院, 2018.
Huang Bo-tao. Fatigue performance of strain-hardening fiber-reinforced cementitious composite and its functionally-graded structures[D]. Hangzhou: College of Civil Engineering and Architecture, Zhejiang University, 2018.
18 Arthur M, Gonzalo R. Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete[J]. International Journal of Fatigue, 2015, 70: 342-350.
19 刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连: 大连理工大学土木工程学院, 2012.
Liu Wen. Experimental study on dynamic mechanical properties of ultra-high toughness cementitious composites[D]. Dalian: School of Civil Engineering, Dalian University of Technology, 2012.
20 Teng J G, Lam L, Lin G, et al. Numerical simulation of FRP-Jacketed RC columns subjected to cyclic and seismic loading[J]. Journal of Composites for Construction, 2016, 20(1): 1-13.
21 李天涛. 基于能量耗散的强震岩体震裂损伤特性及其孕灾机理研究[D]. 成都: 成都理工大学环境与土木工程学院, 2017.
Li Tian-tao. Seismic damage characteristics of rock based on energy dissipation and disaster-pregnant mechanism of strong earthquake[D]. Chengdu: College of Environment and Civil Engineering, Chengdu University of Technology, 2017.
[1] 刘璐,周华西,陈传海,龚梦辉,冯虎田,周长光. 基于竞争失效模型的滚珠丝杠副可靠性设计建模[J]. 吉林大学学报(工学版), 2022, 52(2): 458-465.
[2] 孟广伟,任传鑫,李锋,魏彤辉. 随机载荷作用下的结构疲劳寿命区间分析[J]. 吉林大学学报(工学版), 2022, 52(1): 46-52.
[3] 严庆光,冯梓轩,李湘吉,王瑛玮. 一机六件等应力三点弯曲疲劳试验机的研制[J]. 吉林大学学报(工学版), 2021, 51(6): 2013-2020.
[4] 程东辉,范永萱,王彦松. RC类活性粉末混凝土钢筋粘结-滑移本构模型[J]. 吉林大学学报(工学版), 2021, 51(4): 1317-1330.
[5] 庄蔚敏,王鹏跃,高瑞娟,解东旋. 温热成形对AA5754铝合金静态力学性能的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 847-854.
[6] 彭勇,杨汉铎,陆学元,李彦伟. 基于离散元法的空隙特征对沥青混合料虚拟剪切疲劳寿命的影响[J]. 吉林大学学报(工学版), 2021, 51(3): 956-964.
[7] 张姝玮,郭忠印,杨轸,柳本民. 驾驶行为多重分形特征在驾驶疲劳检测中的应用[J]. 吉林大学学报(工学版), 2021, 51(2): 557-564.
[8] 陈学文,王继业,杨喜晴,皇涛,宋克兴. Cr8合金钢热变形行为及位错密度演变规律[J]. 吉林大学学报(工学版), 2020, 50(1): 91-99.
[9] 石舟,寇淑清. 36MnVS4裂解连杆性能分析及轻量化设计[J]. 吉林大学学报(工学版), 2019, 49(6): 1992-2001.
[10] 杨德磊,童乐为. 支管受轴向受拉工况下CHS-CFSHS T型节点应力集中系数计算公式[J]. 吉林大学学报(工学版), 2019, 49(6): 1891-1899.
[11] 刘义伦,王卿,刘驰,李松柏,何军,赵先琼. 蠕变和人工时效对2524铝合金疲劳裂纹扩展性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1636-1643.
[12] 叶辉,朱艳荣,蒲永锋. 纤维增强复合材料应变率效应的数值仿真[J]. 吉林大学学报(工学版), 2019, 49(5): 1622-1629.
[13] 罗开玉,邢月华,柴卿锋,吴世凯,尹叶芳,鲁金忠. 激光冲击强化对2Cr13不锈钢腐蚀 疲劳性能的影响[J]. 吉林大学学报(工学版), 2019, 49(3): 850-858.
[14] 毛宇泽, 王黎钦. 鼠笼支撑一体化结构对薄壁球轴承承载性能的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1508-1514.
[15] 王春生, 邹丽, 杨鑫华. 基于邻域粗糙集的铝合金焊接接头疲劳寿命影响因素分析[J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!