吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 273-284.doi: 10.13229/j.cnki.jdxbgxb20210493

• 通信与控制工程 • 上一篇    

冰雪环境下基于神经网络的驾驶人换道意图识别

卢辉遒1(),赵枫1,谢波1,田彦涛1,2   

  1. 1.吉林大学 通信工程学院,长春 130012
    2.吉林大学 工程仿生教育部重点实验室,长春 130022
  • 收稿日期:2021-06-01 出版日期:2023-01-01 发布日期:2023-07-23
  • 作者简介:卢辉遒(1971-),男,高级工程师. 研究方向:先进控制与智能装备,汽车制动系统智能测试技术.E-mail: luhq@jlu.edu.cn
  • 基金资助:
    国家自然科学基金区域创新发展联合基金项目(U19A2069);国家自然科学基金汽车产业创新发展联合基金项目(U1664263)

Driver's lane change intention recognition in snow and ice environment based on neural network

Hui-qiu LU1(),Feng ZHAO1,Bo XIE1,Yan-tao TIAN1,2   

  1. 1.College of Communication Engineering,Jilin University,Changchun 130012,China
    2.Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
  • Received:2021-06-01 Online:2023-01-01 Published:2023-07-23

摘要:

驾驶人驾驶汽车行驶过程会受到很多因素影响,不同的驾驶人相应的操作习惯不相同,不同路况驾驶方式也会不同。因此,本文对冰雪环境下行车特点进行分析,依据Carmaker搭建的半实物模拟驾驶仿真平台采集该条件下(包含对开路面)驾驶人行为参数以及车辆参数等数据,分析选取特征参数,建立数据样本库。基于神经网络建立意图识别模型,对模型分别从单一工况、复合工况进行验证,通过实验分析了模型性能,实验结果表明该模型能在对开路面准确识别驾驶人意图。

关键词: 交通运输系统工程, 驾驶人意图, 神经网络, 模拟驾驶, 仿真分析

Abstract:

The process of driving a car can be affected by many factors. Different drivers have different operating habits and different driving ways under different road conditions. Therefore, in this paper, driving characteristics in snow and ice covered environment were analyzed. Based on Carmaker, the hardware-in-the-loop driving simulation platform, data such as driver behavior parameters and vehicle parameters were collected under this condition (including the bifurcated road surface), characteristic parameters were analyzed and selected, and data sample database was established. The intention recognition model was established based on neural network, and the model was verified in single condition and compound condition respectively. The performance of the model was compared and analyzed. It can be obtained that the model can accurately identify the driver's intention on the bifurcated road.

Key words: engineering of communication and transportation system, driver intention, neural network, driving simulation, the simulation analysis

中图分类号: 

  • U491.2

图1

人机共驾系统结构"

图2

模拟驾驶实验平台"

图3

实验路线图"

图4

道路环境及交通流"

图5

车道保持和左右换道工况"

图6

Carmaker参数设置界面"

图7

车辆参数对比图A"

图8

车辆参数对比图B"

图9

某次换道过程中车速变化"

图10

驾驶状态变量数据原始分布特征箱线图"

图11

神经网络拓扑图"

图12

激活函数"

图13

意图识别模型神经网络结构"

图14

驾驶意图识别过程"

图15

不同路面车辆横向位移轨迹"

图16

采用正常路面数据的意图模型识别结果"

图17

采用对开路面数据的意图模型识别结果"

图18

车道保持工况模型识别结果"

图19

左换道工况模型识别结果"

图20

右换道工况模型识别结果"

图21

复合工况模型识别结果"

1 李克强.汽车技术的发展动向及我国的对策[J]. 汽车工程,2009, 31(11): 1005-1016.
Li Ke-qiang. Development trend of automobile technology and my country's countermeasures[J]. Automotive Engineering, 2009, 31(11): 1005-1016.
2 Yun M, Zhao J, Zhao J, et al. Impact of in-vehicle navigation information on lane-change behavior in urban expressway diverge segments[J]. Accident: Analysis and prevention, 2017, 106: 53-66.
3 秦恩国. 我国道路交通事故现状与对策研究[J]. 内燃机与配件, 2018 (16): 184-185.
Qin En-guo. Research on the current situation and countermeasures of road traffic accidents in my country[J]. Internal Combustion Engine & Parts, 2018 (16): 184-185.
4 孙亮. 模式识别原理[M]. 北京: 北京工业大学出版社, 2009.
5 李航. 统计学习方法[M]. 北京: 清华大学出版社, 2012.
6 Jang Y, Mallipeddi R, Lee M. Driver's lane-change intent identification based on pupillary variation[C]// IEEE International Conference on Consumer Electronics, Shenzhen, China, 2014: 197-198.
7 李慧, 谭盛彬, 张硕. 支持向量机纯电动客车驾驶意图识别[J]. 长春工业大学学报, 2017, 38(2): 133-137.
Li Hui, Tan Sheng-bin, Zhang Shuo. Support vector machine pure electric bus driving intention recognition[J]. Journal of Changchun University of Technology, 2017, 38(2): 133-137.
8 宗长富, 杨肖, 王畅, 等. 汽车转向时驾驶人驾驶意图辨识与行为预测[J]. 吉林大学学报:工学版, 2009,49(1): 27-32.
Zong Chang-fu, Yang Xiao, Wang Chang, et al. Driver's driving intention recognition and behavior prediction when a car is turning[J]. Journal of Jilin University(Engineering and Sciences Edition), 2009,49(1): 27-32.
9 Xu G, Liu L, Song Z. Driver behavior analysis based on Bayesian network and multiple classifiers[C]//Intelligent Computing and Intelligent Systems, Beijing,China,2010: 663-668.
10 王庆年, 王俊, 陈慧勇, 等. 混合动力车辆中的加速与制动意图识别[J]. 吉林大学学报:工学版, 2014,44(1): 281-286.
Wang Qing-nian, Wang Jun, Chen Hui-yong, et al. Acceleration and braking intention recognition in hybrid electric vehicles[J]. Journal of Jilin University(Engineering and Sciences Edition), 2014,44(1): 281-286.
11 Kim I, Bong J, Park J, et al. Prediction of driver's intention of lane change by augmenting sensor information using machine learning techniques[J]. Sensors, 2017, 17(6): 1350.
12 李青林, 彭金栓, 付锐, 等. 基于驾驶人操纵特性和交通环境状态的换道行为预测[J]. 科学技术与工程, 2019, 19(12): 368-377.
Li Qing-lin, Peng Jin-shuan, Fu Rui, et al. Prediction of lane changing behavior based on driver's handling characteristics and traffic environment state[J]. Science Technology and Engineering, 2019, 19(12): 368-377.
[1] 吕锋,李念,冯壮壮,张杨航. 面向用户的个性化产品服务系统协同过滤推介方法[J]. 吉林大学学报(工学版), 2023, 53(7): 1935-1942.
[2] 巫威眺,曾坤,周伟,李鹏,靳文舟. 基于多源数据和响应面优化的公交客流预测深度学习方法[J]. 吉林大学学报(工学版), 2023, 53(7): 2001-2015.
[3] 程国柱,盛林,赵浩,冯天军. 基于危险度分析的信号交叉口专用相位设置条件[J]. 吉林大学学报(工学版), 2023, 53(7): 1962-1969.
[4] 何永明,陈世升,冯佳,万亚楠. 基于高精地图的超高速公路虚拟轨道系统[J]. 吉林大学学报(工学版), 2023, 53(7): 2016-2028.
[5] 刘鹏举. 基于深度神经网络的物联网安全态势自动辨识算法设计[J]. 吉林大学学报(工学版), 2023, 53(7): 2121-2126.
[6] 刘培勇,董洁,谢罗峰,朱杨洋,殷国富. 基于多支路卷积神经网络的磁瓦表面缺陷检测算法[J]. 吉林大学学报(工学版), 2023, 53(5): 1449-1457.
[7] 张振海,季坤,党建武. 基于桥梁裂缝识别模型的桥梁裂缝病害识别方法[J]. 吉林大学学报(工学版), 2023, 53(5): 1418-1426.
[8] 孙超,尹浩为,汤文蕴,褚昭明. 交通需求估计下的检测器布局和手机数据扩样推断[J]. 吉林大学学报(工学版), 2023, 53(4): 1070-1077.
[9] 常玉林,徐文倩,孙超,张鹏. 车联网环境下考虑遵从程度的混合流量逐日均衡[J]. 吉林大学学报(工学版), 2023, 53(4): 1085-1093.
[10] 贾洪飞,徐英俊,杨丽丽,王楠. 商品车多式联运联盟成员选择及利益分配[J]. 吉林大学学报(工学版), 2023, 53(4): 1060-1069.
[11] 冀汶莉,田忠,柴敬,张丁丁,王斌. 多属性融合分布式光纤导水裂隙带高度预测方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1200-1210.
[12] 肖雪,李克平,彭博,昌满玮. 基于决策-规划迭代框架的智驾车换道行为建模[J]. 吉林大学学报(工学版), 2023, 53(3): 746-757.
[13] 姚荣涵,徐文韬,郭伟伟. 基于因子长短期记忆的驾驶人接管行为及意图识别[J]. 吉林大学学报(工学版), 2023, 53(3): 758-771.
[14] 田彦涛,许富强,王凯歌,郝子绪. 考虑周车信息的自车期望轨迹预测[J]. 吉林大学学报(工学版), 2023, 53(3): 674-681.
[15] 于雅静,郭健,王荣浩,秦伟,宋明武,向峥嵘. 基于状态观测器的多四旋翼无人机时变编队控制[J]. 吉林大学学报(工学版), 2023, 53(3): 871-882.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!