吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2119-2129.doi: 10.13229/j.cnki.jdxbgxb20220016

• • 上一篇    

基于Avl-Cruise的燃料电池汽车传动比及能量管理策略

隗海林1(),王泽钊2,张家祯3,刘洋2   

  1. 1.吉林大学 生物与农业工程学院,长春 130022
    2.吉林大学 交通学院,长春 130022
    3.吉林大学 汽车工程学院,长春 130022
  • 收稿日期:2022-01-04 出版日期:2022-09-01 发布日期:2022-09-13
  • 作者简介:隗海林(1969-),男,教授,博士生导师. 研究方向:车辆节能与排气净化. E-mail:khl69@163.com
  • 基金资助:
    吉林省重大科技项目(20200501010GX)

Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise

Hai-lin KUI1(),Ze-zhao WANG2,Jia-zhen ZHANG3,Yang LIU2   

  1. 1.College of Biological and Agricultural Engineering,Jilin University,Changchun 130022,China
    2.College of Transportation,Jilin University,Changchun 130022,China
    3.College of Automotive Engineering,Jilin University,Changchun 130022,China
  • Received:2022-01-04 Online:2022-09-01 Published:2022-09-13

摘要:

为了提高燃料电池汽车的动力性和经济性,基于Avl-Cruise对某燃料电池汽车进行了建模,并在Simulink中建立了模糊控制能量管理策略。采用Isight/Cruise联合仿真的方法将固定挡减速器优化为两挡AMT变速箱。仿真结果表明:本文模糊控制能量管理策略有效,相比于功率跟随能量管理策略,在NEDC工况和WLTP工况下经济性分别提升了16.4%和8.5%;基于模糊控制的优化传动比的燃料电池汽车对比未优化传动比的燃料电池汽车,在NEDC工况和WLTP工况下经济性分别提升了1.1%和2.8%。

关键词: 车辆工程, 燃料电池, 能量管理, 参数匹配, 传动比优化, 模糊控制

Abstract:

In order to improve the power performance and economy of fuel cell vehicles, a fuel cell vehicle based on AVL-CRUISE was modeled, and the energy management strategy of fuzzy control based on Simulink was established. Then, the fixed gear was optimized into a two-speed AMT gearbox based on Isight/Cruise co-simulation. Simulation results show that the established fuzzy control energy management strategy is effective. Compared with the rule-based energy management strategy, the economy is improved by 16.4% and 8.5% respectively under NEDC and WLTP conditions. Compared with the fuel cell vehicle without optimized transmission ratio based on fuzzy control, the fuel cell vehicle with optimized transmission ratio based on fuzzy control has improved economy by 1.1% and 2.8% respectively under NEDC and WLTP conditions.

Key words: vehicle engineering, fuel cell, energy management, parameter matching, transmission ratio optimization, fuzzy control

中图分类号: 

  • U461.8

图1

燃料电池汽车混合驱动模式结构图"

表1

不同混合度对比"

指标补偿型混合型全功率型
动力性中等良好
成本中等
适用性良好中等

表2

整车基本参数"

结构参数数值
整备质量/kg1850
满载质量/kg2300
迎风面积/m22.2
空气阻力系数0.3
滚动阻力系数0.0137
轮胎滚动半径/m0.324
汽车旋转质量换算系数1.05
主减速器传动比6.0

表3

整车性能设计指标"

性能指标数值
纯电动续驶里程/km30
满载车速≥30 km/h时的最大爬坡度/%20
0~100 km/h加速时间/s≤15
0~50 km/h加速时间/s≤6
最高车速/(km·h-1≥150

表4

驱动电机峰值扭矩和峰值功率的参数匹配"

性能指标数值电机需求参数数值

最大爬坡度/%

(满载车速=30 km/h)

18峰值扭矩/(N·m)259
20284
22309
起步加速度/(m·s-21.5峰值扭矩/(N·m)185
2.0242
2.5300
加速时间(0~100 km/h)/s14峰值功率/kW80
13.585
1390

表5

燃料电池动态响应时的电池功率需求"

燃料电池功率变化率/(kW·s-1电池需求功率/kW燃料电池峰值功率响应时间/s
10808
16545
20304

表6

动力系统各部件主要参数"

动力系统部件参数数值
质子交换膜燃料电池峰值功率/kW80
额定功率/kW50

三元聚合物锂离子

电池

最大放电电流/A66.7
输出电压/V408~501
最大输出功率/kW80
容量/(kW·h)8
额定电压/V450
永磁同步电机额定功率/kW50
峰值功率/kW80
峰值转矩/(N·m)300
最高转速/103 (r·min-110
基速/(r·min-12550

图2

前向仿真流程图"

图3

燃料电池汽车整车仿真模型"

图4

模糊控制器计算流程"

表7

燃料电池的衰减率百分比"

工作条件衰减率/%
启/停机33
低功率4.7
变载56.5
高功率5.8

表8

模糊逻辑控制器规则表"

需求功率SOCBMS
BMSBMSBMS
需求功率变化率VBMMMVSVSSVSVSVS
BMMBVSSSVSVSVS
MMBBVSSLSVSVSS
SMBVBSLSLSVSVSS

图5

NSGA-Ⅱ算法流程图"

图6

WLTP循环工况的车速跟随图"

表9

仿真对比结果"

参数功率跟随模糊控制
最高车速/(km·h-1165165
0~100 km/h的加速时间/s13.914.8
0~50 km/h的加速时间/s5.45.7
NEDC循环工况的氢耗/[kg·(100 km)-11.0450.893
WLTP循环工况的氢耗/[kg·(100 km)-11.1861.057

图7

两种循环工况下的SOC变化曲线"

图8

两种循环工况下的燃料电池输出功率变化曲线"

图9

变速箱挡位传动比寻优历程"

表10

优化后仿真结果对比"

方法主减速比1挡传动比2挡传动比NEDC循环工况氢耗/[kg·(100 km)-1WLTP循环工况氢耗/[kg·(100 km)-1
功率跟随6.01.01.01.0451.186
模糊控制6.01.01.00.8931.057
传动比优化的功率跟随4.02.01.11.0221.174
传动比优化的模糊控制4.02.41.10.8831.027
1 Kendall M. Fuel cell development for New Energy Vehicles (NEVs) and clean air in China[J]. Progress in Natural Science: Materials International, 2018, 28(2): 113-120.
2 Liu F Q, Zhao F Q, Liu Z W, et al. The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: The China case[J]. International Journal of Hydrogen Energy, 2018, 43(50): 22604-22621.
3 Fu J, You H, Zhao J W, et al. An energy control strategy of fuel cell hybrid unmanned surface vehicle based on pmp algorithm[C]∥2020 Chinese Automation Congress, Shanghai, China, 2020: 6260-6264.
4 金希计. 新能源汽车的技术原理和优缺点探究[J]. 时代汽车, 2020, 16(15): 80-81.
Jin Xi-ji. Research on the technical principles, advantages and disadvantages of new energy vehicle[J]. Auto Time, 2020, 16(15): 80-81.
5 Zhao H, Wang Y, Huang X, et al. Configuration analysis and parameter matching of fuel cell electric vehicle driving system[C]∥45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 2019: 6388-6393.
6 徐乐鹏. 某燃料电池重卡动力系统参数匹配与能量管理策略研究[D]. 太原: 太原理工大学机械与运载工程学院, 2020.
Xu Le-peng. Research on parameter matching and energy management strategy of a fuel cell heavy truck power system[D]. Taiyuan: College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, 2020.
7 郭斌, 秦孔建, 卢青春, 等. 燃料电池混合动力系统构型和控制方法研究[J]. 汽车科技, 2006, 33(3): 10-14.
Guo Bin, Qin Kong-jian, Lu Qing-chun, et al. Research on configuration and control method of fuel cell hybrid power system[J]. Auto Sci-tech, 2006, 33(3): 10-14.
8 宋昱, 韩恺, 李小龙, 等. 燃料电池汽车混合度与能量管理策略研究[J]. 交通科技与经济, 2019, 21(2): 40-46, 67.
Song Yu, Han Kai, Li Xiao-long, et al. A study of degree of hybridization and energy management strategies for fuel cell electric vehicle[J]. Technology and Economy in Areas of Communications, 2019, 21(2): 40-46, 67.
9 Ma S, Lin M, Lin T E, et al. Fuel cell-battery hybrid systems for mobility and off-grid applications: a review[J]. Renewable and Sustainable Energy Reviews, 2020, 135: No. 110119.
10 宗贺辉. 氢燃料电池客车电电混合动力系统研究[D]. 郑州: 华北水利水电大学机械工程学院, 2020.
Zong He-hui. Research on electric-electric hybrid power system of hydrogen fuel cell bus[D]. Zhengzhou: School of Mechanical Engineering, North China University of Water Resources and Electric Power, 2020.
11 王骞, 李顶根, 苗华春. 基于模糊逻辑控制的燃料电池汽车能量管理控制策略研究[J]. 汽车工程, 2019, 41(12): 1347-1355.
Wang Qian, Li Ding-gen, Miao Hua-chun. Rasearch on energy management strategy of fuel cell vehicle based on fuzzy logic control[J]. Automotive Engineering, 2019, 41(12): 1347-1355.
12 张梦, 杨玉新, 罗羽, 等. 模糊逻辑应用的燃料电池汽车能量管理策略[J]. 电气自动化, 2020, 42(1): 50-53.
Zhang Meng, Yang Yu-xin, Luo Yu, et al. Fuel cell vehicle energy management strategy based on fuzzy logic[J]. Electrical Automation, 2020, 42(1): 50-53.
13 Lee H, Cha S W. Energy management strategy of fuel cell electric vehicles using model-based reinforcement learning with data-driven model update[J]. IEEE Access, 2021, 9: 59244-59254.
14 Inci M, Büyük M, Demir M H, et al. A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects[J]. Renewable and Sustainable Energy Reviews, 2021, 137: No.110648.
15 Zhan Y D, Guo Y G, Zhu J G, et al. Comprehensive influences measurement and analysis of power converter low frequency current ripple on PEM fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31352-31359.
16 Pei P C, Chen H C. Main factors affecting the lifetime of proton exchange membrane fuel cells in vehicle applications: a review[J]. Applied Energy, 2014, 125: 60-75.
17 王季方, 卢正鼎. 模糊控制中隶属度函数的确定方法[J]. 河南科学, 2000, 18(4): 348-351.
Wang Ji-fang, Lu Zheng-ding. Determination method of membership function in fuzzy control[J]. Henan Science, 2000, 18(4): 348-351.
18 鲁楠, 唐岚, 程洋, 等. 纯电动汽车传动系统参数匹配及优化[J]. 汽车实用技术, 2019, 43(8): 47-50.
Lu Nan, Tang Lan, Cheng Yang, et al. Parameters matching and optimization for power-train of electrical vehicle[J]. Automobile Applied Technology, 2019, 43(8): 47-50.
19 叶山顶. 电动汽车无离合器AMT换档控制策略研究[D]. 北京: 北京理工大学机械工程学院, 2016.
Ye Shan-ding. Study on the AMT shifting control strategy for electrical vehicle[D]. Beijing: School of Mechanical Engineering, Beijing Institute of Technology, 2016.
20 詹长书, 王清. 基于改进遗传算法电动汽车变速器参数设计与优化[J]. 重庆理工大学学报: 自然科学版, 2020, 34(2): 1-5.
Zhan Chang-shu, Wang Qing. Design and optimazation of transmission parameters of electric vehicle based on improved genetic algorithm[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(2): 1-5.
21 王南, 刘庆阳, 周莎莎, 等. 基于Isight平台NSGA-Ⅱ方法的3-PRS并联机构多目标优化[J]. 机械设计与制造, 2015, 52(12): 198-201.
Wang Nan, Liu Qing-yang, Zhou Sha-sha, et al. Multi-objective optimization of 3-PRS parallel mechanism based on NSGA-Ⅱ method of Isight platform[J]. Machinery Design and Manufacture, 2015, 52(12): 198-201.
[1] 刘继宗,吴小平,孔维华. 基于鱼群优化算法的有轨电车用燃料电池混合动力系统参数配置[J]. 吉林大学学报(工学版), 2022, 52(9): 2004-2013.
[2] 王克勇,鲍大同,周苏. 基于数据驱动的车用燃料电池故障在线自适应诊断算法[J]. 吉林大学学报(工学版), 2022, 52(9): 2107-2118.
[3] 杨子荣,李岩,冀雪峰,刘芳,郝冬. 质子交换膜燃料电池运行工况参数敏感性分析[J]. 吉林大学学报(工学版), 2022, 52(9): 1971-1981.
[4] 胡云峰,于彤,杨惠策,孙耀. 低温环境下燃料电池启动优化控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 2034-2043.
[5] 都京,赵洪辉,王宇鹏,丁天威,魏凯,王恺,韩令海. 基于AMESim模型的燃料电池发动机排氢策略优化及整车搭载验证[J]. 吉林大学学报(工学版), 2022, 52(9): 2069-2076.
[6] 张冲,胡云峰,宫洵,孙耀. 燃料电池阴极流量无模型自适应滑模控制器设计[J]. 吉林大学学报(工学版), 2022, 52(9): 2085-2095.
[7] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[8] 陈凤祥,张俊宇,裴冯来,侯明涛,李其朋,李培庆,王洋洋,张卫东. 质子交换膜燃料电池氢气供应系统的建模及匹配设计[J]. 吉林大学学报(工学版), 2022, 52(9): 1982-1995.
[9] 刘镇宁,江柯,赵韬韬,樊文选,卢国龙. 大功率质子交换膜燃料电池测试系统的开发及试验[J]. 吉林大学学报(工学版), 2022, 52(9): 2025-2033.
[10] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[11] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[12] 张恒,詹志刚,陈奔,隋邦杰,潘牧. 气体扩散层各向异性传输特性的孔尺度模拟[J]. 吉林大学学报(工学版), 2022, 52(9): 2055-2062.
[13] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[14] 武小花,余忠伟,朱张玲,高新梅. 燃料电池公交车模糊能量管理策略[J]. 吉林大学学报(工学版), 2022, 52(9): 2077-2084.
[15] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!