吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (9): 2077-2084.doi: 10.13229/j.cnki.jdxbgxb20211371

• • 上一篇    

燃料电池公交车模糊能量管理策略

武小花1,2(),余忠伟1,2,朱张玲3,高新梅1,2   

  1. 1.西华大学 汽车测控与安全四川省重点实验室,成都 610039
    2.西华大学 四川省新能源汽车智能控制与仿真测试技术工程研究中心,成都 610039
    3.安徽普思标准技术有限公司,安徽 芜湖 241000
  • 收稿日期:2021-12-15 出版日期:2022-09-01 发布日期:2022-09-13
  • 作者简介:武小花(1984-),女,副教授,博士. 研究方向:新能源汽车动力系统优化控制. E-mail:xiaohuawu13@163.com
  • 基金资助:
    四川省科技计划项目(2020YFQ0037);西华大学研究生创新基金项目(YCJJ2020073)

Fuzzy energy management strategy of fuel cell buses

Xiao-hua WU1,2(),Zhong-wei YU1,2,Zhang-ling ZHU3,Xin-mei GAO1,2   

  1. 1.Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province,Xihua University,Chengdu 610039,China
    2.Provincial Engineering Research Center for New Energy Vehicle Intelligent Control and Simulation Test Technology of Sichuan,Xihua University,Chengdu 610039,China
    3.Anhui Pusibiaozhun Technology Co. ,Ltd. ,Wuhu 241000,China
  • Received:2021-12-15 Online:2022-09-01 Published:2022-09-13

摘要:

为提高燃料电池公交车的运行经济性,本文选取实车工况,在燃料电池、锂电池以及动力系统数学模型的基础上完成燃料电池公交车动态规划能量管理的仿真求解。通过将求解结果转化为模糊控制规则,制定模糊控制策略,提出了一种基于工况更新构建可变模糊规则的能量管理方法。以百公里等效氢耗、荷电状态(SOC)变化量为指标对比了实车能量管理策略、模糊控制策略应用于实车的控制效果。最后,对比了不同策略下燃料电池公交车锂电池初始SOC对长距离行驶百公里等效氢耗的影响,结果表明,基于实车工况动态规划结果制定的模糊控制策略相对于实车能量管理策略百公里等效氢耗降低了3.97%。

关键词: 车辆工程, 燃料电池公交车, 能量管理, 动态规划, 模糊控制

Abstract:

In order to improve the operating economy of the fuel cell bus, the real vehicle operating conditions were selected, and the simulation solution of the dynamic programming energy management of the fuel cell bus was completed on the basis of the mathematical model of the fuel cell, lithium battery and power system. By transforming the solution results into fuzzy control rules and formulating fuzzy control strategies, an energy management method based on working condition update to construct variable fuzzy rules was proposed. Taking the equivalent hydrogen consumption per 100 kilometers and the change of state of charge (SOC) as indicators, the control effects of the real vehicle energy management strategy and the fuzzy control strategy applied to the real vehicle were compared. Finally, the influence of the initial SOC of the lithium battery of the fuel cell bus on the equivalent hydrogen consumption of 100 kilometers for long-distance driving under different strategies was compared. The results show that the fuzzy control strategy based on the dynamic planning results of the actual vehicle operating conditions reduces the equivalent hydrogen consumption per 100 kilometers by 3.97% compared with the actual vehicle energy management strategy.

Key words: vehicle engineering, fuel cell bus, energy management, dynamic programming, fuzzy control

中图分类号: 

  • U461.8

图1

燃料电池公交车动力系统结构"

表1

某燃料电池公交车主要参数"

参数数值
车轮半径r/m0.479
迎风面积A/m27.13
风阻系数CD0.65
滚动阻力系数f0.0076+0.000056ua
最高车速/(km·h-169
锂电池单体额定电压/V3.22
(锂电池最大充/放电倍率)/C1/2
燃料电池额定工作电压/V180
(电机额定/峰值功率)/kW100/200
传动比ig6.14
机械传动效率ηt0.95
旋转质量系数δ1.2
质量(自重+65%载重)m/kg11200+4095
锂电池额定容量C/(A·h)173
锂电池串联/并联数162/1
燃料电池最大功率/kW47
燃料电池额定工作电流/A100
(电机额定/最高转速)/(r·min-11274/3000

图2

燃料电池公交车工况"

图3

动态规划能量管理求解寻优流程"

图4

动态规划功率分配"

图5

实车SOC区间"

图6

参数隶属度"

图7

可变模糊控制规则的构建方法"

图8

模糊控制规则MAP"

图9

实车CD-CS能量管理策略"

图10

实车工况的模糊控制策略功率分配"

图11

燃料电池公交车SOC曲线"

表2

初始SOC对等效氢耗的影响"

锂电池初始SOC实车控制策略模糊控制策略
锂电池末态SOC等效氢耗/[kg·(100 km)-1锂电池末态SOC等效氢耗/[kg·(100 km)-1
0.50.745.310.755.08
0.60.735.040.754.82
0.70.744.850.754.63
0.80.724.580.754.44
0.90.724.340.754.27
1 张风奇,胡晓松,许康辉,等. 混合动力汽车模型预测能量管理研究现状与展望[J]. 机械工程学报, 2019, 55(10): 86-108.
Zhang Feng-qi, Hu Xiao-song, Xu Kang-hui, et al. Research status and prospects of hybrid electric vehicle model predictive energy management[J]. Chinese Journal of Mechanical Engineering, 2019, 55(10): 86-108.
2 王哲,谢怡,孙维,等. 燃料电池客车动力系统建模与能量管理策略研究[J]. 同济大学学报: 自然科学版, 2019, 47(1): 97-103, 123.
Wang Zhe, Xie Yi, Sun Wei, et al. Research on modeling of fuel cell bus power system and energy management strategy[J]. Journal of Tongji University (Natural Science Edition), 2019, 47(1): 97-103, 123.
3 赵治国,沈沛鸿,郏怡颖,等. 燃料电池轿车模型预测实时优化控制[J]. 同济大学学报: 自然科学版, 2018, 46(5): 648-657.
Zhao Zhi-guo, Shen Pei-hong, Jia Yi-ying, et al. Model predictive real-time optimization control of fuel cell car[J]. Journal of Tongji University (Natural Science Edition), 2018, 46(5): 648-657.
4 应天杏. 基于功率需求预测的燃料电池汽车能量管理自适应控制策略研究[D]. 上海:上海交通大学机械与动力工程学院, 2018.
Ying Tian-xing. Research on adaptive control strategy of fuel cell vehicle energy management based on power demand prediction[D]. Shanghai:School of Mechanical and Power Engineering,Shanghai Jiaotong University, 2018.
5 Liu Yong-gang, Li Jie, Chen Zheng, et al. Research on a multi-objective hierarchical prediction energy management strategy for range extended fuel cell vehicles[J]. Journal of Power Sources, 2019, 429: 55-66.
6 林歆悠,李雪凡,林海波. 考虑燃料电池衰退的FCHEV反馈优化控制策略[J]. 中国公路学报, 2019, 32(5): 153-161.
Lin Xin-you, Li Xue-fan, Lin Hai-bo. FCHEV feedback optimization control strategy considering fuel cell degradation[J]. China Journal of Highway and Transport, 2019, 32(5): 153-161.
7 Zhou Wei, Yang Lin, Cai Yi-shan, et al. Dynamic programming for new energy vehicles based on their work modes part II: fuel cell electric vehicles[J]. Journal of Power Sources, 2018, 407: 92-104.
8 Xu Liang-fei, Ouyang Ming-gao, Li Jian-qiu, et al. Application of Pontryagin's minimal principle to the energy management strategy of plugin fuel cell electric vehicles [J]. Journal of Hydrogen Energy, 2013, 38(24): 10104-10115.
9 Wu Xiao-hua, Hu Xiao-song, Yin Xiao-feng, et al. Convex programming energy management and components sizing of a plug-in fuel cell urban logistics vehicle[J]. Journal of Power Sources, 2019, 423: 358-366.
10 王哲,谢怡,臧鹏飞,等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报:工学版, 2020, 50(1): 36-43.
Wang Zhe, Xie Yi, Zang Peng-fei, et al. Energy management strategy for fuel cell buses based on the principle of minimum value[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 36-43.
11 Wang Yong-qiang, Advani Suresh G, Prasad Ajay K. A comparison of rule-based and model predictive controller-based power management strategies for fuel cell/battery hybrid vehicles considering degradation[J]. International Journal of Hydrogen Energy, 2020, 45(58): 33948-33956.
12 武小花,邹佩佩,傅家豪,等. 燃料电池电动汽车动力系统能量管理策略研究进展[J]. 西华大学学报: 自然科学版, 2020, 39(4): 89-96.
Wu Xiao-hua, Zou Pei-pei, Fu Jia-hao, et al. Research progress on energy management strategies of fuel cell electric vehicle power system[J]. Journal of Xihua University (Natural Science Edition), 2020, 39(4): 89-96.
13 吕沁阳,滕腾,张宝迪,等. 增程式燃料电池车经济性与耐久性优化控制策略[J]. 哈尔滨工业大学学报, 2021, 53(7): 126-133.
Lv Qin-yang, Teng Teng, Zhang Bao-di, et al. Optimal control strategy for economy and durability of extended-range fuel cell vehicles[J]. Journal of Harbin Institute of Technology, 2021, 53(7): 126-133.
[1] 张佩,王志伟,杜常清,颜伏伍,卢炽华. 车用质子交换膜燃料电池空气系统过氧比控制方法[J]. 吉林大学学报(工学版), 2022, 52(9): 1996-2003.
[2] 池训逞,侯中军,魏伟,夏增刚,庄琳琳,郭荣. 基于模型的质子交换膜燃料电池系统阳极气体浓度估计技术综述[J]. 吉林大学学报(工学版), 2022, 52(9): 1957-1970.
[3] 裴尧旺,陈凤祥,胡哲,翟双,裴冯来,张卫东,焦杰然. 基于自适应LQR控制的质子交换膜燃料电池热管理系统温度控制[J]. 吉林大学学报(工学版), 2022, 52(9): 2014-2024.
[4] 陈凤祥,伍琪,李元松,莫天德,李煜,黄李平,苏建红,张卫东. 2.5吨燃料电池混合动力叉车匹配、仿真及优化[J]. 吉林大学学报(工学版), 2022, 52(9): 2044-2054.
[5] 高青,王浩东,刘玉彬,金石,陈宇. 动力电池应急冷却喷射模式实验分析[J]. 吉林大学学报(工学版), 2022, 52(8): 1733-1740.
[6] 王奎洋,何仁. 基于支持向量机的制动意图识别方法[J]. 吉林大学学报(工学版), 2022, 52(8): 1770-1776.
[7] 王骏骋,吕林峰,李剑敏,任洁雨. 分布驱动电动汽车电液复合制动最优滑模ABS控制[J]. 吉林大学学报(工学版), 2022, 52(8): 1751-1758.
[8] 刘汉武,雷雨龙,阴晓峰,付尧,李兴忠. 增程式电动汽车增程器多点控制策略优化[J]. 吉林大学学报(工学版), 2022, 52(8): 1741-1750.
[9] 杨红波,史文库,陈志勇,郭年程,赵燕燕. 基于某二级减速齿轮系统的齿面修形优化[J]. 吉林大学学报(工学版), 2022, 52(7): 1541-1551.
[10] 聂光明,谢波,田彦涛. 基于Frenet框架的协同自适应巡航控制算法设计[J]. 吉林大学学报(工学版), 2022, 52(7): 1687-1695.
[11] 郝帅,程川泰,王军年,张君媛,俞有. 运动型SUV驾驶室布置人机优化设计与测试评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1477-1488.
[12] 张家旭,郭崇,王晨,赵健,王欣志. 基于半实物仿真平台的自动泊车系统性能评价[J]. 吉林大学学报(工学版), 2022, 52(7): 1552-1560.
[13] 华琛,牛润新,余彪. 地面车辆机动性评估方法与应用[J]. 吉林大学学报(工学版), 2022, 52(6): 1229-1244.
[14] 李雄,兰凤崇,陈吉清,童芳. Hybird III假人模型与CHUBM人体生物力学模型的正碰损伤对比[J]. 吉林大学学报(工学版), 2022, 52(6): 1264-1272.
[15] 刘兴涛,刘晓剑,武骥,何耀,刘新天. 基于曲线压缩和极限梯度提升算法的锂离子电池健康状态估计[J]. 吉林大学学报(工学版), 2022, 52(6): 1273-1280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!