吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 854-860.doi: 10.7964/jdxbgxb201304002

• 论文 • 上一篇    下一篇

悉尼自适应交通控制系统线圈数据短时多步预测双层模型

李琦1,2, 姜桂艳3   

  1. 1. 吉林大学 交通学院,长春 130022;
    2. 青岛市城市规划设计研究院,山东 青岛 266011;
    3. 宁波大学 海运学院,浙江 宁波 315211
  • 收稿日期:2012-05-22 出版日期:2013-07-01 发布日期:2013-07-01
  • 通讯作者: 姜桂艳(1964-),女,教授,博士生导师.研究方向:交通信息采集、处理与应用. E-mail:jianggy@jlu.edu.cn E-mail:jianggy@jlu.edu.cn
  • 作者简介:李琦(1985-),男,博士研究生.研究方向:交通信息采集、处理与应用.E-mail:liqi19851211@126.com
  • 基金资助:

    国家自然科学基金项目(51278257);高等学校博士学科点专项科研基金项目(20110061110034);浙江省自然科学基金项目(LY12F01013).

Bi-level model of multi-step forecasting for short-term data of loop in Sydney coordinated adaptive traffic system

LI Qi1,2, JIANG Gui-yan3   

  1. 1. College of Transportation, Jilin University, Changchun 130022, China;
    2. Qingdao Urban Planning and Design Research Institute, Qingdao 266071, China;
    3. School of Maritime and Transportation, Ningbo University, Ningbo 315211,China
  • Received:2012-05-22 Online:2013-07-01 Published:2013-07-01

摘要:

为了进一步改善悉尼自适应交通控制系统(Sydney coordinated adaptive traffic system, SCATS)线圈数据短时多步预测的效果,在对SCATS线圈数据进行预处理的基础上,设计了一种基于动态神经网络的短时多步预测双层模型,包括基于NARX(Nonlinear autoregressive model with exogenous inputs)神经网络的多步预测方法以及基于FTD(Focused time-delay)神经网络的可预测步数在线估计方法,并采用某特大城市SCATS线圈实测数据进行了验证和对比分析。结果表明:本文方法能够进一步降低SCATS线圈数据短时多步预测的误差。

关键词: 交通运输系统工程, 悉尼自适应交通控制系统, 短时交通预测, 动态神经网络, 多步预测

Abstract:

In order to improve the effect of multi-step forecasting for short term traffic data collected from the loop in Sydney Coordinated Adaptive Traffic System (SCATS), on the basis of data preprocessing, a bi-level model of multi-step forecasting using dynamic neural networks was designed. This model includes a multi-step forecasting method based on Nonlinear Autoregressive model with exogenous inputs (NARX) neural network and a predictable steps online estimation method based on Focused Time-Delay (FTD) neural network. Validation and comparative analysis were carried out using data of loop in SCATS measured from a megacity. The results indicate that the proposed method can further reduce the errors of short-term traffic multi-step forecasting in SCATS.

Key words: engineering of communications and transportation system, Sydney coordinated adaptive traffic system (SCATS), short-term traffic forecasts, dynamic neural network, multistep forecasts

中图分类号: 

  • U491

[1] 全永燊.城市交通控制[M]. 北京:人民交通出版社,1989:226-236.

[2] 彭信林,王宁鸣,周剑峰,等. SCATS数据采集系统的设计与实现[J]. 计算机工程,2008,34(24):256-260. Peng Xin-lin, Wang Ning-ming, Zhou Jian-feng, et al. Design and implementation of data collection system on SCATS[J]. Computer Engineering, 2008, 34(24): 256-260.

[3] 姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社,2004:114-119.

[4] 姚智胜,邵春福,熊志华,等.基于主成分分析和支持向量机的道路网短时交通流量预测[J].吉林大学学报:工学版,2008,38(1):48-52. Yao Zhi-sheng, Shao Chun-fu, Xiong Zhi-hua,et al. Short-term traffic volumes forecasting of road network based on principal compontent analysis and support vector mochine[J]. Journal of Jilin University(Engineering and Technology Edition),2008,38(1):48-52.

[5] Li C X, Anavatti S G, Ray T. Short-term traffic flow prediction using different techniques//The 37th Annual Conference of the IEEE Industrial Electronics Society, Melbourne, 2011:2423-2428.

[6] Gao S, Zhang Z Y,Cao C G. Road traffic freight volume forecast using support vector machine combining forecasting[J]. Journal of Software, 2011, 6(9):1680-1687.

[7] Smith B L, Williams B M, Oswald R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research, Part C: Emergence Technology, 2002, 10(4):303-321.

[8] Hosseini S H, Moshiri B, Rahimi-Kian A, et al. Short-term traffic flow forecasting by mutual information and artificial neural networks//IEEE International Conference on Industrial Technology,Athens: IEEE, 2012: 1136-1141.

[9] Dougherty M S, Cobbet M R. Short-term inter-urban traffic forecasts using neural networks[J]. International Journal of Forecasting, 1997(13):21-31.

[10] 姜桂艳,常安德,牛世峰,等. 基于BP神经网络的交通数据序列动态可预测性分析方法[J].北京工业大学学报,2011,37(7):1019-1026. Jiang Gui-yan, Chang An-de, Niu Shi-feng, et al. Dynamic predictability analysis for traffic data serials based on BP neural network[J]. Journal of Beijing University of Technology,2011, 37(7):1019-1026.

[11] Pisoni E, Farina M, Carnevale C, et al. Forcasting peak air pollution levels using NARX models[J]. Engineering Applications of Artificial Intelligence, 2009, 22:593-602.

[12] 姜桂艳,李琦,常安德,等. 基于SCATS线圈数据的交通状态在线定量评价与预测方法. 中国专利:CN101739814A,2010-06-16.

[13] 薛薇. SPSS统计分析方法及应用[M]. 北京:电子工业出版社,2004:113-115.

[14] Htike K K, Khalifa O O. Rainfall forecasting models using focused time-delay neural networks //International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2010:1-6.

[15] Arifovic J, Genay R. Using genetic algorithms to select architecture of a feedforward artificial neural network[J]. Physica A: Statistical Mechanics and its Applications, 2001, 289 (3-4):574-594.

[1] 陈永恒,刘芳宏,曹宁博. 信控交叉口行人与提前右转机动车冲突影响因素[J]. 吉林大学学报(工学版), 2018, 48(6): 1669-1676.
[2] 常山,宋瑞,何世伟,黎浩东,殷玮川. 共享单车故障车辆回收模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1677-1684.
[3] 曲大义,杨晶茹,邴其春,王五林,周警春. 基于干线车流排队特性的相位差优化模型[J]. 吉林大学学报(工学版), 2018, 48(6): 1685-1693.
[4] 宗芳, 齐厚成, 唐明, 吕建宇, 于萍. 基于GPS数据的日出行模式-出行目的识别[J]. 吉林大学学报(工学版), 2018, 48(5): 1374-1379.
[5] 刘翔宇, 杨庆芳, 隗海林. 基于随机游走算法的交通诱导小区划分方法[J]. 吉林大学学报(工学版), 2018, 48(5): 1380-1386.
[6] 钟伟, 隽志才, 孙宝凤. 不完全网络的城乡公交一体化枢纽层级选址模型[J]. 吉林大学学报(工学版), 2018, 48(5): 1387-1397.
[7] 刘兆惠, 王超, 吕文红, 管欣. 基于非线性动力学分析的车辆运行状态参数数据特征辨识[J]. 吉林大学学报(工学版), 2018, 48(5): 1405-1410.
[8] 宗芳, 路峰瑞, 唐明, 吕建宇, 吴挺. 习惯和路况对小汽车出行路径选择的影响[J]. 吉林大学学报(工学版), 2018, 48(4): 1023-1028.
[9] 栾鑫, 邓卫, 程琳, 陈新元. 特大城市居民出行方式选择行为的混合Logit模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[10] 陈永恒, 刘鑫山, 熊帅, 汪昆维, 谌垚, 杨少辉. 冰雪条件下快速路汇流区可变限速控制[J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[11] 王占中, 卢月, 刘晓峰, 赵利英. 基于改进和声搜索算法的越库车辆排序[J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[12] 李志慧, 胡永利, 赵永华, 马佳磊, 李海涛, 钟涛, 杨少辉. 基于车载的运动行人区域估计方法[J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[13] 陈松, 李显生, 任园园. 公交车钩形转弯交叉口自适应信号控制方法[J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[14] 苏书杰, 何露. 步行交通规划交叉路口行人瞬时动态拥塞疏散模型[J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[15] 孟品超, 李学源, 贾洪飞, 李延忠. 基于滑动平均法的轨道交通短时客流实时预测[J]. 吉林大学学报(工学版), 2018, 48(2): 448-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!