吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 303-308.

• 论文 • 上一篇    下一篇

基于能量有限元方法的声腔内部噪声预测

陈书明, 王登峰, 谭刚平, 苏丽俐, 李未   

  1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
  • 收稿日期:2011-01-19 出版日期:2012-03-01 发布日期:2012-03-01
  • 通讯作者: 王登峰(1963-),男,教授,博士生导师.研究方向:汽车NVH分析与控制.E-mail:caewdf@jlu.edu.cn E-mail:caewdf@jlu.edu.cn
  • 作者简介:陈书明(1980-),男,讲师.研究方向:汽车NVH性能分析与控制.E-mail:shumingchen@yahoo.cn
  • 基金资助:

    国家自然科学基金项目(50975119);"863"国家高技术研究发展计划项目(2006AA110102-3).

Prediction of cavity interior noise based on energy finite element method

CHEN Shu-ming, WANG Deng-feng, TAN Gang-ping, SU Li-li, Li Wei   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2011-01-19 Online:2012-03-01 Published:2012-03-01

摘要: 为了预测声腔内部噪声,基于能量有限元方法(EFEA)建立了声腔-平板-声腔的EFEA耦合模型,对声腔内部噪声进行了数值计算。建立了声腔-平板-声腔的统计能量分析(SEA)模型,并将EFEA模型的预测结果与SEA模型的预测结果进行了对比。结果表明,二者具有较好的一致性。建立了声腔-前风挡玻璃-声腔的EFEA耦合模型和SEA耦合模型,分别对EFEA和SEA模型的外侧声腔响应进行了仿真分析,并与试验结果进行了对比。结果表明,EFEA预测结果与SEA预测结果以及试验结果均吻合良好,充分显示了本文所建立的声腔-前风挡玻璃-声腔EFEA模型对声腔内部噪声预测的准确性。

关键词: 车辆工程, 噪声预测, 能量有限元方法, 统计能量分析, 传递损失

Abstract: In order to predict the interior noise of the cavity, the basic principle of energy finite element method (EFEM) was introduced. A coupled cavity-plate-cavity energy finite element analysis (EFEA) model was built, and its interior noise was computed with numerical method. Meanwhile, a statistical energy analysis (SEA) model of cavity-plate-cavity was also built. The prediction result of the EFEA model was compared with the result of the SEA model. The result showed that they were in accordance with each other. Moreover, an EFEA model and a SEA model of cavity-front windshield-cavity were built. The responses of the outer cavities in EFEA and SEA models were respectively calculated, and the response results were compared with test. The comparison results showed that the prediction result of EFEA model was in accordance with that of SEA and test, and the prediction accuracy was also validated.

Key words: vehicle engineering, noise prediction, energy finite element method, statistical energy analysis, transmission loss

中图分类号: 

  • U467.4
[1] Bernhard R J, Huff J E Jr. Structural-acoustic design at high frequency using the energy finite element method[J]. Journal of Vibration and Acoustics, 1999, 121(7):295-301.

[2] Zhang Wei-guo, Vlahopoulos Nickolas, Wu Kuang-cheng. An energy finite element formulation for high-frequency vibration analysis of externally fluid-loaded cylindrical shells with periodic circumferential stiffeners subjected to axi-symmetric excitation[J]. Journal of Sound and Vibration, 2005, 282:679-700.

[3] Nefsde D J, Sung S H. Power flow finite element analysis of dynamic system: basic theory and application to beams[J]. ASME Transaction Journal of Vibration Acoustics Stress and Reliability in Designed, 1989, 111(1):94-100.

[4] Wohlever J C, Bernhard R J. Mechanical energy flow models of rods and beams[J]. Journal of Sound and Vibration, 1992, 153: 1-19.

[5] Wang Shuo, Bernhard Robert. Energy finite element method (EFEM) and statistical energy analysis (SEA)//SAE Paper, 1999-01-1705.

[6] Zhang W, Raveendra S T. Interior noise prediction based on energy finite element method//SAE Paper, 2005-01-2332.

[7] Raveendra S T, Zhang W. Vibro-acoustic analysis using a hybrid energy finite element/boundary element method//SAE Paper, 2007-01-2177.

[8] Zhang W, Raveendra S T. Sound package analysis using energy finite element method//SAE Paper, 2005-01-2309

[9] Patricia A Manning. Energy finite element analysis of a vehicle floor//SAE Paper, 2005-01-2420.

[10] Vlahopoulos Nickolas, Zhang Geng, He Jim. Combining an energy boundary element with an energy finite element analysis for airborne noise simulation//SAE Paper, 2007-01-2178.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!