吉林大学学报(工学版) ›› 2012, Vol. 42 ›› Issue (02): 309-315.

• 论文 • 上一篇    下一篇

基于语义细分的车内声品质模糊综合评价

苏丽俐, 王登峰, 姜吉光, 陈书明, 谭刚平   

  1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
  • 收稿日期:2011-01-10 出版日期:2012-03-01 发布日期:2012-03-01
  • 通讯作者: 王登峰(1963-),男,教授,博士生导师.研究方向:汽车NVH分析与控制.E-mail:caewdf@jlu.edu.cn E-mail:caewdf@jlu.edu.cn
  • 作者简介:苏丽俐(1981-),女,博士研究生.研究方向:汽车NVH分析与控制.E-mail:sull09@mails.jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(50975119).

Fuzzy comprehensive evaluation of vehicle interior sound quality based on semantic differential method

SU Li-li, WANG Deng-feng, JIANG Ji-guang, CHEN Shu-ming, TAN Gang-ping   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2011-01-10 Online:2012-03-01 Published:2012-03-01

摘要: 针对传统的语义细分法难以在声品质主观评价试验中获得评价对象整体感受择优排序的不足,提出了一种基于语义细分的声品质主观模糊综合评价方法,建立了适合于车内声品质主观评价的声音属性评价指标,确定了声音属性的结构及层次划分,根据不同试验确定了声音属性的关注程度各级指标权重。以在某轿车车内采集到的15个噪声样本为评价对象,分别利用该方法和成对比较法对声音的"豪华感"进行主观评价试验,并对评价得分进行排序比较。结果表明:本文提出的声品质主观模糊综合评价方法可在有效地维持评价主体原有任务量不变的情况下,准确地得到声音样本感知属性的评价等级隶属关系,以及声音样本整体主观感受评价得分的择优排序。

关键词: 车辆工程, 车内噪声, 声品质, 主观评价, 语义细分法, 模糊综合评价

Abstract: A new method of fuzzy comprehensive evaluation on the vehicle interior sound quality subjective evaluation was proposed based on the semantic differential to overcome the shortcoming of the traditional semantic differential method which is inefficient to rank the results of overall perception of sound samples in sound quality subjective evaluation. The sound characteristic evaluation indexes of vehicle interior sound quality subjective evaluation were established. The structure and the hierarchy of the fuzzy comprehensive evaluation were defined based on the evaluation index system of the semantic differential method. The weights of the evaluation indexes were obtained according to the importance of sound characteristics in different subjective evaluation tests. Taking 15 sound samples acquired from a passenger car as evaluation objects, and the sound "luxury" as the evaluation index, subjective evaluation comparison tests between the paired comparison method and the fuzzy comprehensive evaluation method were performed, and the evaluation results were ranked. The results showed that the proposed subjective fuzzy comprehensive evaluation method can accurately provide the membership of evaluation ranking of sound sample perception characteristic and the ranks of the sound sample overall subjective perception under the condition of keeping the same evaluation workload.

Key words: vehicle engineering, vehicle interior noise, sound quality, subjective evaluation, semantic defferential method, fuzzy comprehensive evaluation

中图分类号: 

  • U467.4
[1] Arne Nyknen, Roger Johnsson, Anna Sirkka, et al. Assessment of the change in similarity judgments of auralized engine sounds caused by changes in frequency resolution of transfer functions[J].Applied Acoustics, 2011,72(2/3):115-123.

[2] Lee Sang-Kwon. Objective evaluation of interior sound quality in passenger cars during acceleration[J]. Journal of Sound and Vibration,2008, 310(1/2): 149-168.

[3] Stephan Paul, Fernanda Higashi de Vasconcelos. Developing a computerized interface for sound quality evaluation//SAE Paper,2008-36-0558.

[4] Ricardo Penna Leite, Stephan Paul, Samir N Y Gerges. A sound quality-based investigation of the HVAC system noise of an automobile model[J]. Applied Acoustics, 2009, 70: 636-645.

[5] Patrick Susini, Olivier Houix, Nicolas Misdariis, et al. Instruction's effect on semantic scale ratings of interior car sounds[J]. Applied Acoustics, 2009,70(3):389-403.

[6] Sonoko Kuwano, Hugo Fastl. Subjective evaluation of car door sound//SQS2002, Sound Quality Symposium,Dearborn, Michigan,United States, 2006.

[7] Kousuke Moumura, Junji Yoshida. Perception modeling and quantification of sound quality in cabin//SAE Paper,2003-01-1514.

[8] Welling T, Williams M, Pitts M. Customer perception of switch-feel in luxury sports utility vehicles[J]. Food Quality and Preference, 2008,19(8):737-746.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!