›› 2012, Vol. 42 ›› Issue (04): 816-822.

• 论文 • 上一篇    下一篇

基于电控液压制动装置的车辆主动报警/避撞系统

王建强1, 王海鹏1, 张磊2   

  1. 1. 清华大学 汽车安全与节能国家重点实验室, 北京 100084;
    2. 北京航天发射技术研究所, 北京 100076
  • 收稿日期:2011-10-24 出版日期:2012-07-01 发布日期:2012-07-01
  • 基金资助:
    国家科技支撑计划项目(2009BAG13A04).

Vehicle collision warning and avoidance system based on electronic hydraulic brake device

WANG Jian-qiang1, WANG Hai-peng1, ZHANG Lei2   

  1. 1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China;
    2. Beijing Institute of Space Launch Technology, Beijing 100076, China
  • Received:2011-10-24 Online:2012-07-01 Published:2012-07-01

摘要: 为预防道路尾随相撞事故,开发了一种基于电控液压制动装置的车辆前向报警/避撞系统。该系统根据前方车辆和自车的运动状态,基于碰撞时间实时判断尾随相撞危险度。在危险情况下,系统通过视听觉报警为驾驶员提供警示,并以电控液压制动的方式实现车辆的主动避撞。利用电控液压制动装置搭建了实验平台,对制动压力控制效果进行了验证。将系统安装于试验样车,实车试验结果表明,该系统能为驾驶员提供分级碰撞报警警示和制动辅助,以提高行车安全性。

关键词: 车辆工程, 尾随相撞, 主动避撞, 电控液压制动

Abstract: A forward vehicle collision warning and avoidance system was proposed based on the electronic hydraulic brake device to prevent the rear-end collision. The system real-timely judges the dangerous level of rear-end collision with a time-to-collision algorithm based on the running situations of the front vehicle and this vehicle. When the collision possibility is detected, the system warns the driver with vision and hearing warnings and achieves the vehicle active collision avoidance by the electronic hydraulic brake. An experiment platform was established on a real vehicle to verify the brake pressure control effect. Introducing the system in a test vehicle, the test results show that the system provided timely the stepped collision warning and the brake assistance, enhancing the vehicle driving safety.

Key words: vehicle engineering, rear-end collision, active collision avoidance, electronic hydraulic brake

中图分类号: 

  • U461.91
[1] 公安部交通管理局.中华人民共和国道路交通事故统计年报(2009年度). 无锡:公安部交通管理局科学研究所, 2010.
[2] 张磊. 基于驾驶员特性自学习方法的车辆纵向驾驶辅助系统. 北京:清华大学, 2009. Zhang Lei. A vehicle longitudinal driving assistance system based on self-learning method of driver characteristics. Beijing:Tsinghua University, 2009.
[3] Winsum Wim Van. The human element in car following models[J]. Transportation Research Part F, 1999, 2(4):207-211.
[4] Yamamoto Keiichi. Development of alertness-level-dependent headway distance warning system[J]. JSAE Review, 2001, 22:325-330.
[5] Hillenbrand J, Kroschel K, Schmid V. Situation assessment algorithm for a collision prevention assistant//Proceedings of the 2005 IEEE Intelligent Vehicles Symposium, Nevada:Las Vegas, 2005:459-465.
[6] Polychronopoulos A, Tsogas M, Amditis A, et al. Dynamic situation and threat assessment for collision warning systems:the EUCLIDE approach//Proceedings of the 2004 IEEE Intelligent Vehicles Symposium, Parma, 2004:636-641.
[7] Yoshida H, Nagai M, Kamada T, et al. Experiment and design of advanced brake assist system for active interface vehicle based on driver's gas pedal operation[J]. Review of Automotive Engineering, 2005, 26(2):237-243.
[8] Maciuca D B, Hedrick J K. Advanced nonlinear brake system control for vehicle platooning//Proceedings of the Third European Control Conference, 1995.
[9] Yi K, Kwon Y D. Vehicle-to-vehicle distance and speed control using an electronic-vacuum booster[J]. JSAE Review, 2001(22):403-412.
[10] Subramanian S C, Darbha S, Rajagopal K R. Modeling the pneumatic subsystem of an S-cam air brake system[J]. Journal of Dynamic Systems, Measurement, and Control,2004, 126(1):36-46.
[11] 汪洋. 车辆电控机械制动系统的设计与分析. 南京:南京航空航天大学, 2005. Wang Yang. Research on design and dynamic analysis of the electromechanical braking system. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005.
[12] 杨波. 汽车电控辅助制动系统研究. 北京:清华大学, 2009. Yang Bo. Study on vehicle electronic assistance braking system. Beijing:Tsinghua University,2009.
[13] 李静, 沙宏亮, 王伯平, 等. 基于液压制动轮缸压力估算的车辆电子稳定性程序控制算法[J]. 吉林大学学报:工学版, 2010, 40(6):1478-1481. Li Jing, Sha Hong-liang, Wang Bo-ping, et al. Control algorithm for vehicle electronic stability program based on brake wheel cylinder hydraulic pressure estimation[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(6):1478-1481.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!