›› 2012, Vol. 42 ›› Issue (05): 1100-1106.

• 论文 • 上一篇    下一篇

滚珠丝杠式馈能型减振器的结构设计及参数匹配

王庆年, 刘松山, 王伟华, 魏昊   

  1. 吉林大学 汽车仿真与控制国家重点实验室, 长春 130022
  • 收稿日期:2011-10-16 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 王伟华(1971-),男,教授,博士.研究方向:节能与新能源汽车.E-mail:wwh_jlu@126.com E-mail:wwh_jlu@126.com
  • 基金资助:
    "863"国家高技术研究发展计划项目(2006AA11A184);吉林省科技发展计划项目(20080536).

Structure design and parameter matching of ball-screw regenerative damper

WANG Qing-nian, LIU Song-shan, WANG Wei-hua, WEI Hao   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2011-10-16 Online:2012-09-01 Published:2012-09-01

摘要: 根据前期研究对滚珠丝杠式馈能减振器结构进行了重新设计。从所匹配的传统减振器速度-力特性出发,利用概率统计的方法对1/4悬架仿真结果进行分析。以提高馈能效率为目标,对馈能电机的峰值功率、转速以及基速比进行了匹配。从结构和效率两方面对丝杠参数进行了匹配和校核。结果表明,所设计和匹配的馈能减振器满足实际使用要求,并且能够高效地回收悬架振动能量。

关键词: 车辆工程, 馈能减振器, 参数匹配, 结构设计, 馈能电机

Abstract: The structure of the ball-screw regenerative damper was redesigned according to the results of the previous research. Based on the velocity-force characteristic of the matched conventional damper, a 1/4 suspension simulation results were analyzed by the probability statistics method. Taking the enhancement of the energy regenerative efficiency as the target, the maximum power of the regenerative electromotor, speed and speed ratio were matched. The ball-screw parameters were matched and verified in the aspects of structure and efficiency. The results showed that the designed and matched regenerative damper can effectively regenerate the suspension vibration energy, satisfying the actual requirements to replace the conventional damper.

Key words: vehicle engineering, regenerative damper, parameter matching, structure design, regenerative electromotor

中图分类号: 

  • U463.33
[1] Segel L, Lu X P. Vehicular resistance to motion as influenced by road roughness and highway alignment[J]. Australian Road Research, 1982, 12(4): 211-222.
[2] Browne A, Hamburg J. On road measurement of the energy dissipated in automotive shock absorbers//Symposium on Simulation and Control of Ground Vehicles and Transportation Systems, Anaheim CA, USA: ASME, 1986.
[3] Kawamoto Y, Suda Y, Kondo T. Modeling of electromagnetic damper for automobile suspension[J]. Journal of System Design and Dynamics, 2007, 1(3):524-535.
[4] 曹民,刘为,喻凡. 车辆主动悬架用电机作动器的研制[J]. 机械工程学报, 2008, 44(11):224-228. Cao Min, Liu Wei, Yu Fan. Development on electromotor actuator for active suspension of vehicle[J]. Chinese Journal of Mechanical Engineering, 2008, 44(11): 224-228.
[5] 于长淼,王伟华,王庆年. 双超越离合器式电磁馈能阻尼器原型机试验测试与分析[J]. 吉林大学学报:工学版,2012,39(4):292-297. Yu Chang-miao, Wang Wei-hua, Wang Qing-nian. Experiments and analysis of the dual-overrunning clutches electro-mechanical regenerative damper prototype[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 39(4): 292-297.
[6] Liu Song-shan, Wei Hao, Wang Wei-hua. Investigation on some key issues of regenerative damper with rotary motor for automobile suspension//2011 International Conference on Electronic and Mechanical Engineering and Information Technology (EMEIT), Harbin, China, 2011.
[7] Gysen Bart L J,van der Sande Tom P J, Paulides Johannes J H. Efficiency of a regenerative direct-drive electromagnetic active suspension[J].IEEE Transactions on Vehicular Technology, 2011, 60(4): 1384-1393.
[8] Morteza Montazeri-Gh, Mehdi Soleymani.Investigation of the energy regeneration of active suspension system in hybrid electric vehicles[J].IEEE Transactions on Industrial Electronics, 2010, 57(3): 918-925.
[9] Weeks D A, Bresie D A, Beno J H, et al. The design of an electromagnetic linear actuator for an active suspension//SAE Paper, 1999-01-0730.
[10] Gysen Bart L J,van der Sande Tom P J, Paulides Johannes J H. Active electromagnetic suspension system for improved vehicle dynamics[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1156-1163.
[11] 黄胜. 汽车双筒式减振器阻尼特性仿真. 武汉: 华中科技大学机械学院,2007. Huang Shen. Simulation of damping characteristics in automotive double-tube shock absorbers. Wuhan: College of Mechanical Engineering,Huazhong University of Science and Technology, 2007.
[12] 王伟. 车用永磁同步电机的参数匹配、协调控制与性能评价研究. 长春:吉林大学汽车工程学院,2010. Wang Wei. Study on the parameter matching, coordinated control and performance evaluation of hybrid electric vehicle permanent magnetic synchronous motor. Changchun: College of Automobile Engineering,Jinlin University, 2010.
[13] Shigley Joseph E, Mischke Charles R, Brown Thomas H. Standard Handbook of Machine Design[M]. 3rd ed. Columbus, USA:McGraw-Hill, 2004.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!