›› 2012, Vol. 42 ›› Issue (05): 1120-1126.

• 论文 • 上一篇    下一篇

结构声腔耦合系统的振型耦合特性分析及应用

邓兆祥1, 高书娜1,2   

  1. 1. 重庆大学 机械传动国家重点实验室,重庆 400030;
    2. 西南大学 工程技术学院,重庆 400716
  • 收稿日期:2011-07-24 出版日期:2012-09-01 发布日期:2012-09-01
  • 基金资助:
    "863"国家高技术研究发展计划项目( 2006AA110102 );中央高校基本科研业务费资助项目(CDJXS11110005).

Analysis and application of mode shape coupling characteristics of structural sound cavity coupled system

DENG Zhao-xiang1, GAO Shu-na1,2   

  1. 1. The State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China;
    2. College of Engineering and Technology, Southwest University, Chongqing 400716, China
  • Received:2011-07-24 Online:2012-09-01 Published:2012-09-01

摘要: 推导并验证了带-柔性壁面的矩形刚性腔体结构的内部声压表达公式和一种振型耦合系数的有限元计算新方法。深入分析了振型耦合系数的特点,发现影响振型耦合系数的主要因素是结构声腔在耦合面上的振型相似程度和复杂程度,它们进而影响结构声腔振型耦合的强弱。本文基于振型耦合系数的特点,成功控制了某轿车车内噪声,使得驾驶员右耳测点噪声降低5 dB,为轿车车身低噪声设计提供了一种有效可行的新方法。

关键词: 车辆工程, 结构声腔耦合系统, 振型耦合系数, 有限元法, 车内噪声控制

Abstract: A formula for the interior sound pressure of the rectangular rigid box with a flexible wall and a new method to calculate the mode shape coupling coefficient by the finite element analysis were derived and validated. The particular points of the mode shape coupling coefficient were analyzed in detail, and it was found that the main factors affecting the coefficient are the mode shape similarity and complexity of the structural sound cavity in coupling surfaces which affect the coupling degree between the structure and acoustic field. The results were used to analyze and control the interior noise of a car, and the noise reduction of 5 dB was achieved at the driver right ear measuring point, providing an effective new method for low interior noise design of the car body.

Key words: vehicle engineering, structural sound cavity coupled system, mode shape coupling coefficient, finite element method, interior noise control of car

中图分类号: 

  • U467.493
[1] Frank Fahy. Sound and Structural Vibration, Radiation, Transmission and Response[M]. London: Academic Press,1985.
[2] Lau S K, Tang S K. Impacts of structural-acoustic coupling on the performance of energy density-based active sound transmission control[J]. Journal of Sound and Vibration,2003, 266(1):147-170.
[3] Gardonio P, Ferguson N S, Fahy F J. A modal expansion analysis of noise transmission through circular cylindrical shell structures with blocking masses[J].Journal of Sound and Vibration,2001, 244(2):259-297.
[4] Kim S M, Brennan M J. A compact matrix formulation using the impedance and mobility approach for the analysis of structural-acoustic system[J]. Journal of Sound and Vibration,1999, 223(1):97-113.
[5] Lee Y Y, Ng C F. Sound insertion loss of stiffened enclosure plates using the finite element method and the classical approach[J]. Journal of Sound and Vibration,1998, 217(2):239-260.
[6] Fahy F J. Vibration of containing structures by sound in the contained fluid[J]. Journal of Sound and Vibration,1969, 10(3):490-512.
[7] 姚昊萍, 张建润, 陈南, 等. 不同边界条件下的封闭矩形声腔的结构-声耦合分析[J]. 声学学报,2007, 32(6):497-502. Yao Hao-ping, Zhang Jian-run, Chen Nan, et al. Analysis of structural-acoustic coupling of elastic rectangular enclosure with arbitrary boundary conditions[J]. Acta Acustica, 2007, 32(6):497-502.
[8] 罗超, 饶柱石, 赵玫. 基于格林函数法的封闭声腔的结构-声耦合分析[J]. 振动工程学报,2004, 17(3):296-300. Luo Chao, Rao Zhu-shi, Zhao Mei. Analysis of structural-acoustic coupling of an enclosure using Green Function method[J]. Journal of Vibration Engineering,2004, 17(3): 296-300.
[9] Georgiev V B, Krylov V V, Winward R E T B. Simplified modelling of vehicle interior noise: comparison of analytical, numerical and experimental approaches[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2006, 25(2):69-92.
[10] Krylov V V. Simplified reduced-scale modeling of vehicle interior noise//Proceedings of Inter Noise 2004, Prague, Czech Republic,2004.
[11] Krylov V V. Simplified analytical models for prediction of vehicle interior noise//Proceedings of the International Conference on Noise and Vibration Engineering, ISMA Belgium 5, 2002:1973-1980.
[12] 靳国永, 杨铁军, 刘志刚, 等. 弹性板结构封闭声腔的结构-声耦合特性分析[J]. 声学学报,2007, 32(2):178-188. Jin Guo-yong, Yang Tie-jun, Liu Zhi-gang, et al. Analysis of structural-acoustic coupling of an enclosure surrounded by flexible panel[J]. Acta Acustica, 2007, 32(2): 178-188.
[13] Li Y Y, Cheng L. Vibro-acoustic analysis of a rectangular-like cavity with a tilted wall[J]. Applied Acoustics,2007, 68(7):739-751.
[14] Li Y Y, Cheng L. Modifications of acoustic modes and coupling due to a leaning wall in a rectangular cavity[J]. The Journal of the Acoustical Society of America,2004, 116(6):3312-3318.
[15] Kim Seock Hyun, Lee Jang Moo, Sung M H. Structural-acoustic modal coupling analysis and application to noise reduction in a vehicle passenger compartment[J]. Journal of Sound and Vibration, 1999, 225(5):989-999.
[16] Kim Seock Hyun, Lee Jang Moo. A practical method for noise reduction in a vehicle passenger compartment[J]. Journal of Vibration and Acoustics,1998, 120(1):199-205.
[17] 倪振华. 振动力学[M]. 西安: 西安交通大学出版社, 1988.
[18] 高书娜. 轿车车身低频结构声耦合机理及降噪设计研究. 重庆:重庆大学机械工程学院, 2011. Gao Shu-na. Study on mode coupling mechanism and design method of car body to lower interior noise. Chongqing: College of Mechanical Engineering,Chongqing University, 2011.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[14] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
[15] 刘国政, 史文库, 陈志勇. 考虑安装误差的准双曲面齿轮传动误差有限元分析[J]. 吉林大学学报(工学版), 2018, 48(4): 984-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!