›› 2012, Vol. 42 ›› Issue (05): 1127-1134.

• 论文 • 上一篇    下一篇

静液传动高速履带车辆转向参数匹配与控制

张海岭1, 李和言1, 宋卫群2, 马彪1, 高志丰1   

  1. 1. 北京理工大学 机械与车辆学院, 北京 100081;
    2. 中国人民解放军驻318厂军事代表室,北京 100053
  • 收稿日期:2011-07-07 出版日期:2012-09-01 发布日期:2012-09-01
  • 通讯作者: 李和言(1978-),男,副教授.研究方向:车辆传动与控制.E-mail:lovheyan@gmail.com E-mail:lovheyan@gmail.com
  • 基金资助:
    国家自然科学基金项目(51005021).

Control and matching of steering parameters for high-speed tracked vehicle with hydrostatic drive

ZHANG Hai-ling1, LI He-yan1, SONG Wei-qun2, MA Biao1, GAO Zhi-feng1   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081,China;
    2. Military Representative Office of PLA in 318 Factory, Beijing 100053, China
  • Received:2011-07-07 Online:2012-09-01 Published:2012-09-01

摘要: 为了解决静液传动履带车辆转向时外侧系统压力容易过高以及转向轨迹控制问题,基于双侧轮边液压驱动结构特点,提出了外侧马达采用压力、发动机转速双参数控制,内侧跟随外侧采用速度闭环控制的转向控制策略,对目标相对转向半径与方向盘转角、车速,马达排量与发动机转速、系统压力等参数进行了匹配。建立了整车转向仿真模型与实车实验系统。仿真与实验结果表明,控制策略能有效控制系统压力,参数匹配结果能满足转向控制要求,车辆按照目标相对转向半径实现了准确快速转向。

关键词: 车辆工程, 履带车辆, 静液传动, 转向, 控制策略, 参数匹配

Abstract: In order to deal with the problem that the tracked vehicle with hydraulic drive steers the pressure of the outer hydraulic system may become too high and the problem of the steering trajectory control, a new steering control strategy was proposed. In the proposed strategy the outer side hydromotor displacement uses dual-parameter control by hydraulic pressure and engine speed, while the inner side uses speed closed-loop control to follow the outer side. The targeted relative steering radius, the turning angle of steering wheel, vehicle speed, hydraulic displacement, engine speed, and hydraulic system pressure were matched. A simulation model was built for the whole vehicle steering, and a test system was established for the real vehicle. The results of simulation and field test showed, the proposed control strategy can control effectively the hydraulic system pressure, the parameter match can meet the requirements of steering control, to realize the accurate and rapid steering of the vehicle according to the targeted relative steering radius.

Key words: vehicle engineering, tracked vehicle, hydrostatic drive, steering, control strategy, parameter matching

中图分类号: 

  • U463.2
[1] 刘修骥.车辆传动系统分析[M].北京:国防工业出版社,1998.
[2] 陈泽宇,张承宁,李军求,等.双侧电传动履带车辆小半径转向控制策略[J].中国机械工程,2010,21(13): 1632-1637. Chen Ze-yu, Zhang Cheng-ning, Li Jun-qiu,et al. Dual electric tracked vehicle small-radius turning control strateg[J].China Mechanical Engineering,2010,21(13): 1632-1637.
[3] Merhof W, Hackbarth E M. 履带车辆行驶力学[M]. 韩雪海,刘侃,周玉珑,译. 北京:国防工业出版社,1989.
[4] 陈宝瑞. 高速履带车辆无机变速控制研究.北京:北京理工大学机械与车辆学院,2009. Chen Bao-rui. Study on stepless speed regulation control of high speed tracked vehicle hydrostatic transmission. Beijing: The School of Mechenical and Vehicle, Beijing Institute of Technology,2009.
[5] Sauer Danfoss.Series 51 bent axis variable mobors technical information[Z]. 2002.
[6] 李和言,马彪,柳俊忻,等.履带车辆双流传动液压转向功率流设计[J].北京理工大学学报,2009,29(10): 877-880. Li He-yan, Ma Biao, Liu Jun-xin, et al. Design of steering power flow for tracked vehicles with power shift steering system[J]. Journal of Beijing Institute of Technology, 2009,29(10): 877-880.
[7] Rexroth. Variable displacement motor A6VM[Z].1995.
[8] Samhydraulik.Variable displacement motor H2V[Z].1995.
[9] Torsten Kohmäscher, Robert Rahmfeld, Hubertus Murrenhoff. Improved loss modeling of hydrostatic units-requirement for precise simulation of mobile working machine drivelines//IMECE2007-ASME International Mechanical Engineering Congress and Exposition, Washington, 2007.
[10] Ho Triet Hung, Ahn Kyoung Kwan. Modeling and simulation of hydrostatic transmission system with energy regeneration using hydraulic accumulator[J]. Journal of Mechanical Science and Technology, 2010,24(5):1163-1175.
[1] 常成,宋传学,张雅歌,邵玉龙,周放. 双馈电机驱动电动汽车变频器容量最小化[J]. 吉林大学学报(工学版), 2018, 48(6): 1629-1635.
[2] 席利贺,张欣,孙传扬,王泽兴,姜涛. 增程式电动汽车自适应能量管理策略[J]. 吉林大学学报(工学版), 2018, 48(6): 1636-1644.
[3] 何仁,杨柳,胡东海. 冷藏运输车太阳能辅助供电制冷系统设计及分析[J]. 吉林大学学报(工学版), 2018, 48(6): 1645-1652.
[4] 那景新,慕文龙,范以撒,谭伟,杨佳宙. 车身钢-铝粘接接头湿热老化性能[J]. 吉林大学学报(工学版), 2018, 48(6): 1653-1660.
[5] 刘玉梅,刘丽,曹晓宁,熊明烨,庄娇娇. 转向架动态模拟试验台避撞模型的构建[J]. 吉林大学学报(工学版), 2018, 48(6): 1661-1668.
[6] 赵伟强, 高恪, 王文彬. 基于电液耦合转向系统的商用车防失稳控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1305-1312.
[7] 宋大凤, 吴西涛, 曾小华, 杨南南, 李文远. 基于理论油耗模型的轻混重卡全生命周期成本分析[J]. 吉林大学学报(工学版), 2018, 48(5): 1313-1323.
[8] 朱剑峰, 张君媛, 陈潇凯, 洪光辉, 宋正超, 曹杰. 基于座椅拉拽安全性能的车身结构改进设计[J]. 吉林大学学报(工学版), 2018, 48(5): 1324-1330.
[9] 那景新, 浦磊鑫, 范以撒, 沈传亮. 湿热环境对Sikaflex-265铝合金粘接接头失效强度的影响[J]. 吉林大学学报(工学版), 2018, 48(5): 1331-1338.
[10] 王炎, 高青, 王国华, 张天时, 苑盟. 混流集成式电池组热管理温均特性增效仿真[J]. 吉林大学学报(工学版), 2018, 48(5): 1339-1348.
[11] 金立生, 谢宪毅, 高琳琳, 郭柏苍. 基于二次规划的分布式电动汽车稳定性控制[J]. 吉林大学学报(工学版), 2018, 48(5): 1349-1359.
[12] 隗海林, 包翠竹, 李洪雪, 李明达. 基于最小二乘支持向量机的怠速时间预测[J]. 吉林大学学报(工学版), 2018, 48(5): 1360-1365.
[13] 林学东, 江涛, 许涛, 李德刚, 郭亮. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报(工学版), 2018, 48(5): 1436-1443.
[14] 王德军, 魏薇郦, 鲍亚新. 考虑侧风干扰的电子稳定控制系统执行器故障诊断[J]. 吉林大学学报(工学版), 2018, 48(5): 1548-1555.
[15] 胡满江, 罗禹贡, 陈龙, 李克强. 基于纵向频响特性的整车质量估计[J]. 吉林大学学报(工学版), 2018, 48(4): 977-983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!